forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGridSampler.cuh
328 lines (294 loc) · 11 KB
/
GridSampler.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/cuda/KernelUtils.cuh>
namespace at { namespace native {
namespace detail {
enum class GridSamplerInterpolation {Bilinear, Nearest, Bicubic};
enum class GridSamplerPadding {Zeros, Border, Reflection};
} // namespace detail
using detail::GridSamplerInterpolation;
using detail::GridSamplerPadding;
// Unnormalizes a coordinate from the -1 to +1 scale to its pixel index value,
// where we view each pixel as an area between (idx - 0.5) and (idx + 0.5).
// if align_corners: -1 and +1 get sent to the centers of the corner pixels
// -1 --> 0
// +1 --> (size - 1)
// scale_factor = (size - 1) / 2
// if not align_corners: -1 and +1 get sent to the image edges
// -1 --> -0.5
// +1 --> (size - 1) + 0.5 == size - 0.5
// scale_factor = size / 2
template <typename scalar_t>
static __forceinline__ __device__
scalar_t grid_sampler_unnormalize(scalar_t coord, int size, bool align_corners) {
if (align_corners) {
// unnormalize coord from [-1, 1] to [0, size - 1]
return ((coord + 1.f) / 2) * (size - 1);
} else {
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
return ((coord + 1.f) * size - 1) / 2;
}
}
// grid_sampler_unnormalize_set_grad works the same as grid_sampler_unnormalize
// except that it also returns the `d output / d input` via pointer argument
// `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static __forceinline__ __device__
scalar_t grid_sampler_unnormalize_set_grad(scalar_t coord, int size,
bool align_corners, scalar_t *grad_in) {
if (align_corners) {
// unnormalize coord from [-1, 1] to [0, size - 1]
*grad_in = static_cast<scalar_t>(size - 1) / 2;
return ((coord + 1.f) / 2) * (size - 1);
} else {
// unnormalize coord from [-1, 1] to [-0.5, size - 0.5]
*grad_in = static_cast<scalar_t>(size) / 2;
return ((coord + 1.f) * size - 1) / 2;
}
}
// Clips coordinates to between 0 and clip_limit - 1
template <typename scalar_t>
static __forceinline__ __device__
scalar_t clip_coordinates(scalar_t in, int clip_limit) {
return ::min(static_cast<scalar_t>(clip_limit - 1), ::max(in, static_cast<scalar_t>(0)));
}
// clip_coordinates_set_grad works similarly to clip_coordinates except that
// it also returns the `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static __forceinline__ __device__
scalar_t clip_coordinates_set_grad(scalar_t in, int clip_limit, scalar_t *grad_in) {
// Note that it is important for the gradient calculation that borders
// are considered out of bounds.
if (in <= static_cast<scalar_t>(0)) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
} else {
scalar_t max = static_cast<scalar_t>(clip_limit - 1);
if (in >= max) {
*grad_in = static_cast<scalar_t>(0);
return max;
} else {
*grad_in = static_cast<scalar_t>(1);
return in;
}
}
}
// Reflects coordinates until they fall between low and high (inclusive).
// The bounds are passed as twice their value so that half-integer values
// can be represented as ints.
template <typename scalar_t>
static __forceinline__ __device__
scalar_t reflect_coordinates(scalar_t in, int twice_low, int twice_high) {
if (twice_low == twice_high) {
return static_cast<scalar_t>(0);
}
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
in = ::fabs(in - min);
// `fmod` returns same sign as `in`, which is positive after the `fabs` above.
scalar_t extra = ::fmod(in, span);
int flips = static_cast<int>(::floor(in / span));
if (flips % 2 == 0) {
return extra + min;
} else {
return span - extra + min;
}
}
// reflect_coordinates_set_grad works similarly to reflect_coordinates except
// that it also returns the `d output / d input` via pointer argument
// `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static __forceinline__ __device__
scalar_t reflect_coordinates_set_grad(scalar_t in, int twice_low, int twice_high,
scalar_t *grad_in) {
if (twice_low == twice_high) {
*grad_in = static_cast<scalar_t>(0);
return static_cast<scalar_t>(0);
}
int grad_in_mult_;
scalar_t min = static_cast<scalar_t>(twice_low) / 2;
scalar_t span = static_cast<scalar_t>(twice_high - twice_low) / 2;
in = in - min;
if (in < static_cast<scalar_t>(0)) {
grad_in_mult_ = -1;
in = -in;
} else {
grad_in_mult_ = 1;
}
// `fmod` returns same sign as `in`, which is positive after the `if` above.
scalar_t extra = ::fmod(in, span);
int flips = static_cast<int>(::floor(in / span));
if (flips % 2 == 0) {
*grad_in = static_cast<scalar_t>(grad_in_mult_);
return extra + min;
} else {
*grad_in = static_cast<scalar_t>(-grad_in_mult_);
return span - extra + min;
}
}
template<typename scalar_t>
static __forceinline__ __device__
scalar_t safe_downgrade_to_int_range(scalar_t x){
// -100.0 does not have special meaning. This is just to make sure
// it's not within_bounds_2d or within_bounds_3d, and does not cause
// undefined behavior. See #35506.
if (x > INT_MAX-1 || x < INT_MIN || !::isfinite(static_cast<double>(x)))
return static_cast<scalar_t>(-100.0);
return x;
}
template<typename scalar_t>
static __forceinline__ __device__
scalar_t compute_coordinates(scalar_t coord, int size,
GridSamplerPadding padding_mode,
bool align_corners) {
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
coord = clip_coordinates(coord, size);
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
if (align_corners) {
coord = reflect_coordinates(coord, 0, 2*(size - 1));
} else {
coord = reflect_coordinates(coord, -1, 2*size - 1);
}
// clip coordinates to image borders
coord = clip_coordinates(coord, size);
}
coord = safe_downgrade_to_int_range(coord);
return coord;
}
// Computes the pixel source index value for a grid coordinate
template <typename scalar_t>
static __forceinline__ __device__
scalar_t grid_sampler_compute_source_index(
scalar_t coord,
int size,
GridSamplerPadding padding_mode,
bool align_corners) {
coord = grid_sampler_unnormalize(coord, size, align_corners);
coord = compute_coordinates(coord, size, padding_mode, align_corners);
return coord;
}
// grid_sampler_compute_source_index_set_grad works similarly to
// grid_sampler_compute_source_index except that it also returns the
// `d output / d input` via pointer argument `grad_in`.
// This is useful in the backward pass of grid_sampler.
template <typename scalar_t>
static __forceinline__ __device__
scalar_t grid_sampler_compute_source_index_set_grad(
scalar_t coord,
int size,
GridSamplerPadding padding_mode,
bool align_corners,
scalar_t *grad_in) {
scalar_t grad_clip, grad_refl;
coord = grid_sampler_unnormalize_set_grad(coord, size, align_corners, grad_in);
if (padding_mode == GridSamplerPadding::Border) {
// clip coordinates to image borders
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
*grad_in = (*grad_in) * grad_clip;
} else if (padding_mode == GridSamplerPadding::Reflection) {
// reflect coordinates by image borders
if (align_corners) {
coord = reflect_coordinates_set_grad(coord, 0, 2*(size - 1), &grad_refl);
} else {
coord = reflect_coordinates_set_grad(coord, -1, 2*size - 1, &grad_refl);
}
// clip coordinates to image borders
coord = clip_coordinates_set_grad(coord, size, &grad_clip);
*grad_in = (*grad_in) * grad_refl * grad_clip;
}
coord = safe_downgrade_to_int_range(coord);
return coord;
}
static __forceinline__ __device__
bool within_bounds_2d(int h, int w, int H, int W) {
return h >= 0 && h < H && w >= 0 && w < W;
}
static __forceinline__ __device__
bool within_bounds_3d(int d, int h, int w, int D, int H, int W) {
return d >= 0 && d < D && h >= 0 && h < H && w >= 0 && w < W;
}
template<typename scalar_t>
static __forceinline__ __device__
scalar_t get_value_bounded(
scalar_t *data, scalar_t x, scalar_t y, int W, int H, int sW, int sH,
GridSamplerPadding padding_mode,
bool align_corners) {
x = compute_coordinates(x, W, padding_mode, align_corners);
y = compute_coordinates(y, H, padding_mode, align_corners);
int ix = static_cast<int>(x);
int iy = static_cast<int>(y);
if (within_bounds_2d(iy, ix, H, W)) {
return data[iy * sH + ix * sW];
}
return static_cast<scalar_t>(0);
}
template<typename scalar_t, typename index_t>
static __forceinline__ __device__
void safe_add_2d(scalar_t *data, int h, int w,
int sH, int sW, int H, int W,
scalar_t delta,
const index_t NC_offset,
const index_t memory_span) {
if (within_bounds_2d(h, w, H, W)) {
fastAtomicAdd(data,
NC_offset + h * sH + w * sW,
memory_span,
delta,
true);
}
}
template<typename scalar_t, typename index_t>
static __forceinline__ __device__
void safe_add_3d(scalar_t *data, int d, int h, int w,
int sD, int sH, int sW, int D, int H, int W,
scalar_t delta,
const index_t NC_offset,
const index_t memory_span) {
if (within_bounds_3d(d, h, w, D, H, W)) {
fastAtomicAdd(data,
NC_offset + d * sD + h * sH + w * sW,
memory_span,
delta,
true);
}
}
template<typename scalar_t, typename index_t>
static __forceinline__ __device__
void add_value_bounded(
scalar_t* data, scalar_t x, scalar_t y, int W, int H, int sW, int sH,
scalar_t delta,
GridSamplerPadding padding_mode,
bool align_corners,
const index_t NC_offset,
const index_t memory_span) {
x = compute_coordinates(x, W, padding_mode, align_corners);
y = compute_coordinates(y, H, padding_mode, align_corners);
int ix = static_cast<int>(x);
int iy = static_cast<int>(y);
safe_add_2d(data, iy, ix, sH, sW, H, W, delta, NC_offset, memory_span);
}
// Calculate the differential of the cubic convolution, i.e. `d coeff / d x`
template<typename scalar_t>
static __forceinline__ __device__
void get_cubic_coefficients_grad(
scalar_t coeffs[4],
scalar_t t) {
// Must be the same as forward calculation in
// aten/src/ATen/native/cuda/UpSample.cuh:get_cubic_upsample_coefficients
scalar_t A = -0.75;
scalar_t x;
x = -1 - t; // 1 < x = |-1 - tx| < 2
coeffs[0] = (-3 * A * x - 10 * A ) * x - 8 * A;
x = -t; // x = |0 - tx| <= 1
coeffs[1] = (-3 * (A + 2) * x - 2 * (A + 3)) * x;
x = 1 - t; // x = |1 - tx| <= 1
coeffs[2] = (3 * (A + 2) * x - 2 * (A + 3)) * x;
x = 2 - t; // 1 < x = |2 - tx| < 2
coeffs[3] = (3 * A * x - 10 * A) * x + 8 * A;
}
}} // namespace at::native