forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDepthwiseConv3d.cu
689 lines (605 loc) · 27.4 KB
/
DepthwiseConv3d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#include <ATen/ATen.h>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/AccumulateType.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/ConvUtils.h>
#include <algorithm>
#include <tuple>
#include <limits>
namespace at {
namespace native {
namespace {
template <typename scalar_t, typename accscalar_t,
int kKnownKernelT, int kKnownKernelH, int kKnownKernelW,
int kKnownDilationT, int kKnownDilationH, int kKnownDilationW>
__global__ void conv_depthwise3d_cuda_kernel(
const PackedTensorAccessor32<scalar_t, 5> input,
PackedTensorAccessor32<scalar_t, 5> output,
const PackedTensorAccessor32<scalar_t, 5> kernel,
const scalar_t* bias,
int strideT, int strideH, int strideW,
int paddingT, int paddingH, int paddingW,
int dilationT_, int dilationH_, int dilationW_)
{
const int kT = kKnownKernelT > 0 ? kKnownKernelT : kernel.size(2);
const int kH = kKnownKernelH > 0 ? kKnownKernelH : kernel.size(3);
const int kW = kKnownKernelW > 0 ? kKnownKernelW : kernel.size(4);
const int oC = output.size(1);
const int oT = output.size(2);
const int oH = output.size(3);
const int oW = output.size(4);
const int iC = input.size(1);
const int iT = input.size(2);
const int iH = input.size(3);
const int iW = input.size(4);
const int channel_multiplier = oC / iC;
const int dilationT = kKnownDilationT > 0 ? kKnownDilationT : dilationT_;
const int dilationH = kKnownDilationH > 0 ? kKnownDilationH : dilationH_;
const int dilationW = kKnownDilationW > 0 ? kKnownDilationW : dilationW_;
const int num_output = output.size(0) * output.stride(0);
CUDA_KERNEL_LOOP(index, num_output) {
const int out_col = index % oW;
const int out_row = (index / oW) % oH;
const int out_frame = (index / oW / oH) % oT;
const int out_channel = (index / oW / oH / oT) % oC;
const int batch = index / oW / oH / oT / oC;
const int in_channel = out_channel / channel_multiplier;
const int in_col_start = out_col * strideW - paddingW;
const int in_row_start = out_row * strideH - paddingH;
const int in_frame_start = out_frame * strideT - paddingT;
accscalar_t sum = 0;
const scalar_t *kernel_ptr = kernel[out_channel].data();
const scalar_t *input_ptr =
&input[batch][in_channel][in_frame_start][in_row_start][in_col_start];
for (int k_frame = 0; k_frame < kT; ++k_frame) {
const int in_frame = in_frame_start + k_frame * dilationT;
for (int k_row = 0; k_row < kH; ++k_row) {
const int in_row = in_row_start + k_row * dilationH;
for (int k_col = 0; k_col < kW; ++k_col) {
const accscalar_t op1 = *(kernel_ptr++);
const int in_col = in_col_start + k_col * dilationW;
if (in_frame >= 0 && in_row >= 0 && in_col >= 0 &&
in_frame < iT && in_row < iH && in_col < iW) {
sum += op1 * *(input_ptr);
}
input_ptr += dilationW;
}
input_ptr += iW * dilationH - kW * dilationW;
}
input_ptr += iW * (iH * dilationT - kH * dilationH);
}
if (bias != NULL) {
sum += bias[out_channel];
}
output[batch][out_channel][out_frame][out_row][out_col] = sum;
}
}
template <typename scalar_t, typename accscalar_t,
int kKnownKernelT, int kKnownKernelH, int kKnownKernelW,
int kKnownDilationT, int kKnownDilationH, int kKnownDilationW,
int kKnownStrideT, int kKnownStrideH, int kKnownStrideW>
__global__ void
conv_depthwise3d_cuda_backward_input_kernel(
const PackedTensorAccessor32<scalar_t, 5> grad_output,
PackedTensorAccessor32<scalar_t, 5> grad_input,
const PackedTensorAccessor32<scalar_t, 5> kernel,
int strideT_, int strideH_, int strideW_,
int paddingT, int paddingH, int paddingW,
int dilationT_, int dilationH_, int dilationW_) {
const int kT = kKnownKernelT > 0 ? kKnownKernelT : kernel.size(2);
const int kH = kKnownKernelH > 0 ? kKnownKernelH : kernel.size(3);
const int kW = kKnownKernelW > 0 ? kKnownKernelW : kernel.size(4);
const int oC = grad_output.size(1);
const int oT = grad_output.size(2);
const int oH = grad_output.size(3);
const int oW = grad_output.size(4);
const int iC = grad_input.size(1);
const int iT = grad_input.size(2);
const int iH = grad_input.size(3);
const int iW = grad_input.size(4);
const int channel_multiplier = oC / iC;
const int dilationT = kKnownDilationT > 0 ? kKnownDilationT : dilationT_;
const int dilationH = kKnownDilationH > 0 ? kKnownDilationH : dilationH_;
const int dilationW = kKnownDilationW > 0 ? kKnownDilationW : dilationW_;
const int strideT = kKnownStrideT > 0 ? kKnownStrideT : strideT_;
const int strideH = kKnownStrideH > 0 ? kKnownStrideH : strideH_;
const int strideW = kKnownStrideW > 0 ? kKnownStrideW : strideW_;
const int num_input = grad_input.size(0) * grad_input.stride(0);
CUDA_KERNEL_LOOP(index, num_input) {
const int in_col = index % iW;
const int in_row = (index / iW) % iH;
const int in_frame = (index / iW / iH) % iT;
const int in_channel = (index / iW / iH / iT) % iC;
const int batch = index / iW / iH / iT / iC;
const int out_col_end = in_col + paddingW;
const int out_row_end = in_row + paddingH;
const int out_frame_end = in_frame + paddingT;
const scalar_t* kernel_ptr = kernel[in_channel * channel_multiplier].data();
accscalar_t sum = 0;
for (int k_chn = in_channel * channel_multiplier;
k_chn < (in_channel + 1) * channel_multiplier;
++k_chn) {
const scalar_t* gout_ptr = grad_output[batch][k_chn].data();
for (int k_frame = 0; k_frame < kT; ++k_frame) {
const int out_frame_raw = out_frame_end - k_frame * dilationT;
const int out_frame = out_frame_raw / strideT;
for (int k_row = 0; k_row < kH; ++k_row) {
const int out_row_raw = out_row_end - k_row * dilationH;
const int out_row = out_row_raw / strideH;
for (int k_col = 0; k_col < kW; ++k_col) {
const accscalar_t op1 = *(kernel_ptr++);
const int out_col_raw = out_col_end - k_col * dilationW;
const int out_col = out_col_raw / strideW;
const int out_offs = (out_frame * oH + out_row) * oW + out_col;
accscalar_t op2 = (accscalar_t)0;
if (out_col >= 0 && out_row >= 0 && out_frame >= 0 &&
out_col < oW && out_row < oH && out_frame < oT) {
op2 = *(gout_ptr + out_offs);
}
if (out_frame * strideT == out_frame_raw &&
out_row * strideH == out_row_raw &&
out_col * strideW == out_col_raw) {
sum += op1 * op2;
}
}
}
}
}
grad_input[batch][in_channel][in_frame][in_row][in_col] = sum;
}
}
template <typename scalar_t, typename accscalar_t,
int kKnownStrideH, int kKnownStrideW>
__global__ void
conv_depthwise3d_cuda_backward_weight_kernel(
const PackedTensorAccessor32<scalar_t, 5> grad_output,
const PackedTensorAccessor32<scalar_t, 5> input,
PackedTensorAccessor32<scalar_t, 5> grad_kernel,
int strideT, int strideH_, int strideW_,
int paddingT, int paddingH, int paddingW,
int dilationT, int dilationH, int dilationW) {
const int kC = grad_kernel.size(0);
const int kT = grad_kernel.size(2);
const int kH = grad_kernel.size(3);
const int kW = grad_kernel.size(4);
const int strideH = kKnownStrideH > 0 ? kKnownStrideH : strideH_;
const int strideW = kKnownStrideW > 0 ? kKnownStrideW : strideW_;
const int k_col = blockIdx.x % kW;
const int k_row = (blockIdx.x / kW) % kH;
const int k_frame = (blockIdx.x / kW / kH) % kT;
const int k_channel = blockIdx.x / kW / kH / kT;
scalar_t *result = &grad_kernel[k_channel][0][k_frame][k_row][k_col];
const int oT = grad_output.size(2);
const int oH = grad_output.size(3);
const int oW = grad_output.size(4);
const int iT = input.size(2);
const int iH = input.size(3);
const int iW = input.size(4);
const int channel_multiplier = grad_output.size(1) / input.size(1);
const int in_channel = k_channel / channel_multiplier;
extern __shared__ int sdata_raw[];
scalar_t* sdata = reinterpret_cast<scalar_t*>(sdata_raw);
if (k_channel >= kC) {
return;
}
const int laneid = threadIdx.x % C10_WARP_SIZE;
const int warpid = threadIdx.x / C10_WARP_SIZE;
const int nwarps = blockDim.x / C10_WARP_SIZE;
accscalar_t grad = 0;
int batch = warpid / oT;
int gout_frame = warpid - batch * oT;
for (int outer_pos = warpid; outer_pos < input.size(0) * oT;
outer_pos += nwarps, gout_frame += nwarps) {
while (gout_frame >= oT) { gout_frame -= oT; batch ++; }
const int in_frame = (gout_frame * strideT) + (k_frame * dilationT) - paddingT;
if (in_frame < 0 || in_frame >= iT) {
continue;
}
const scalar_t* gout_ptr = grad_output[batch][k_channel][gout_frame].data() + laneid;
const scalar_t* input_ptr = input[batch][in_channel][in_frame].data();
int gout_row = laneid / oW;
int gout_col = laneid - gout_row * oW;
for (; gout_row < oH; ) {
const accscalar_t op1 = *(gout_ptr);
gout_ptr += C10_WARP_SIZE;
const int in_col = (gout_col * strideW) + (k_col * dilationW) - paddingW;
const int in_row = (gout_row * strideH) + (k_row * dilationH) - paddingH;
const int in_pos = in_row * iW + in_col;
accscalar_t op2 = (accscalar_t)0;
if (in_col >= 0 && in_col < iW && in_row >= 0 && in_row < iH) {
op2 = *(input_ptr + in_pos);
}
gout_col += C10_WARP_SIZE;
while (gout_col >= oW) {
gout_col -= oW; gout_row ++;
}
grad += op1 * op2;
}
}
sdata[threadIdx.x] = grad;
__syncthreads();
CUDA_KERNEL_ASSERT(__popc(blockDim.x) == 1);
#pragma unroll
for (int i = blockDim.x / 2; i >= 1; i >>= 1) {
if (threadIdx.x < i) {
sdata[threadIdx.x] += sdata[threadIdx.x + i];
}
__syncthreads();
}
if (threadIdx.x == 0) {
*result = sdata[0];
}
}
template <int dim>
void conv_depthwise_shape_check(
const Tensor& input,
const Tensor& weight,
const Tensor& bias,
const Tensor& grad_output,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation) {
TORCH_CHECK(kernel_size.size() == dim,
"kernel size length should be ", dim, ", but got ", kernel_size.size());
TORCH_CHECK(stride.size() == dim,
"stride length should be ", dim, ", but got ", stride.size());
TORCH_CHECK(padding.size() == dim,
"padding length should be ", dim, ", but got ", padding.size());
TORCH_CHECK(dilation.size() == dim,
"dilation length should be ", dim, ", but got ", dilation.size());
TORCH_CHECK(weight.defined(),
"Weight must be defined.");
TORCH_CHECK(input.dim() == dim + 1 || input.dim() == dim + 2,
"Input dimension should be ",
dim + 1, "D or ", dim + 2, "D, got ",
input.dim(), "D");
TORCH_CHECK(weight.dim() == dim + 2,
"Weight dimension should be ", dim + 2, "D, got ", weight.dim(), "D");
TORCH_CHECK(weight.size(1) == 1,
"Depthwise weight should have in_channels=1, got ", weight.size(1));
TORCH_CHECK(weight.size(0) % input.size(-dim - 1) == 0,
"Depthwise out channels should be a multiple of in channels, got ",
weight.size(0), " and ", input.size(-dim - 1));
for (int i = 0; i < dim; ++i) {
TORCH_CHECK(weight.size(i + 2) == kernel_size[i],
"kernel size and weight size mismatch, got ",
kernel_size, " and ", weight.sizes());
TORCH_CHECK(stride[i] >= 1,
"stride should be at least 1, got ", stride);
TORCH_CHECK(padding[i] >= 0,
"padding should be non-negative, got ", padding);
TORCH_CHECK(dilation[i] >= 1,
"dilation should be at least 1, got ", dilation);
}
if (bias.defined()) {
TORCH_CHECK(bias.dim() == 1,
"Bias should be 1D tensor, got ", bias.dim(), "D");
TORCH_CHECK(bias.size(0) == weight.size(0),
"Bias length should be equal to out_channels, got ",
bias.size(0), " and ", weight.size(0));
}
if (grad_output.defined()) {
auto expected_output_size = conv_output_size(input.sizes(), weight.sizes(),
padding, stride, dilation);
TORCH_CHECK(grad_output.dim() == expected_output_size.size(),
"Expect grad_output to be ",
expected_output_size.size(), "D, got ",
grad_output.dim(), "D.");
for (int i = 0; i < grad_output.dim(); ++i) {
TORCH_CHECK(grad_output.size(i) == expected_output_size[i],
"Expect grad_output to be of same shape as output, got ",
grad_output.size(i), " and ", expected_output_size[i],
" at dimension ", i);
}
}
}
}
#define NODEF_OR_EQUAL(x, y) ((y) < 0 || (x) == (y))
#define NODEF_OR_EQUAL_3(x, y1, y2, y3) \
(NODEF_OR_EQUAL(x[0], y1) && \
NODEF_OR_EQUAL(x[1], y2) && \
NODEF_OR_EQUAL(x[2], y3))
#define DWCONV3D_FORWARD_DISPATCH_SPECIALIZATION(kt, kh, kw, dilt, dilh, dilw) \
if (NODEF_OR_EQUAL_3(kernel_size, (kt), (kh), (kw)) && \
NODEF_OR_EQUAL_3(dilation, (dilt), (dilh), (dilw))) { \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_kernel \
<scalar_t, accscalar_t, (kt), (kh), (kw), (dilt), (dilh), (dilw)> \
<<<grid, block, (smem), at::cuda::getCurrentCUDAStream()>>>( \
input_.packed_accessor32<scalar_t, 5>(), \
output_.packed_accessor32<scalar_t, 5>(), \
weight_.packed_accessor32<scalar_t, 5>(), \
bias_ptr, \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
} else
#define DWCONV3D_FORWARD_DISPATCH_OTHERS \
{ \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_kernel \
<scalar_t,accscalar_t, -1, -1, -1, -1, -1, -1> \
<<<grid, block, (smem), at::cuda::getCurrentCUDAStream()>>>( \
input_.packed_accessor32<scalar_t, 5>(), \
output_.packed_accessor32<scalar_t, 5>(), \
weight_.packed_accessor32<scalar_t, 5>(), \
bias_ptr, \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
}
Tensor conv_depthwise3d_cuda(
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size, const c10::optional<Tensor>& bias_opt,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> bias_maybe_owned = at::borrow_from_optional_tensor(bias_opt);
const Tensor& bias = *bias_maybe_owned;
TORCH_CHECK(input.device() == weight.device(), "expects input and weight tensors to be on the same device.");
if (bias.defined()) {
TORCH_CHECK(input.device() == bias.device(), "expects input and bias tensors to be on the same device.");
}
conv_depthwise_shape_check<3>(input, weight, bias, Tensor() /* undefined */,
kernel_size, stride, padding, dilation);
Tensor input_ = input.contiguous();
if (input.dim() == 4 /* no batch */) {
input_ = input.unsqueeze(0);
}
auto output_size = conv_output_size(input_.sizes(), weight.sizes(),
padding, stride, dilation);
for (size_t i = 0; i < output_size.size(); ++i) {
TORCH_CHECK(output_size[i] > 0,
"Output size should be positive, got ", output_size[i], " at dim ", i);
}
Tensor output = at::empty(output_size, input.options());
Tensor output_ = output;
Tensor weight_ = weight.contiguous();
Tensor bias_ = bias.defined() ? bias.contiguous() : bias;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(),
"conv_depthwise3d",
[&]{
int64_t num_outputs = output_.numel();
int64_t block = 256;
int64_t grid = std::min((num_outputs - 1) / block + 1, (int64_t)65536);
int64_t smem = 0;
const scalar_t* bias_ptr =
bias_.defined() ? bias_.data_ptr<scalar_t>() : NULL;
// Range check to avoid overflow in CUDA kernels.
TORCH_CHECK(input_.numel() <= std::numeric_limits<int32_t>::max(),
"Input tensor is too large.");
TORCH_CHECK(output_.numel() <= std::numeric_limits<int32_t>::max(),
"Output tensor is too large.");
TORCH_CHECK(weight_.numel() <= std::numeric_limits<int32_t>::max(),
"Weight tensor is too large.");
for (int i = 0; i < 3; ++i) {
TORCH_CHECK(padding[i] * 2 + input.size(i + 2) <= std::numeric_limits<int32_t>::max(),
"Padded input tensor is too large.");
}
DWCONV3D_FORWARD_DISPATCH_SPECIALIZATION(3, 3, 3, 1, 1, 1)
DWCONV3D_FORWARD_DISPATCH_SPECIALIZATION(-1, -1, -1, 1, 1, 1)
DWCONV3D_FORWARD_DISPATCH_OTHERS
}
);
return output;
}
#undef DWCONV3D_FORWARD_DISPATCH_SPECIALIZATION
#undef DWCONV3D_FORWARD_DISPATCH_OTHERS
#define DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION( \
kt, kh, kw, dilt, dilh, dilw, dt, dh, dw) \
if (NODEF_OR_EQUAL_3(kernel_size, (kt), (kh), (kw)) && \
NODEF_OR_EQUAL_3(dilation, (dilt), (dilh), (dilw)) && \
NODEF_OR_EQUAL_3(stride, (dt), (dh), (dw))) { \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_backward_input_kernel \
<scalar_t, accscalar_t, (kt), (kh), (kw), (dilt), (dilh), (dilw), (dt), (dh), (dw)> \
<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>( \
grad_output_.packed_accessor32<scalar_t, 5>(), \
grad_input_.packed_accessor32<scalar_t, 5>(), \
weight_.packed_accessor32<scalar_t, 5>(), \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
} else
#define DWCONV3D_BACKWARD_INPUT_DISPATCH_OTHERS \
{ \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_backward_input_kernel \
<scalar_t, accscalar_t, -1, -1, -1, -1, -1, -1, -1, -1, -1> \
<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>( \
grad_output_.packed_accessor32<scalar_t, 5>(), \
grad_input_.packed_accessor32<scalar_t, 5>(), \
weight_.packed_accessor32<scalar_t, 5>(), \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
}
#define DWCONV3D_BACKWARD_WEIGHT_DISPATCH_SPECIALIZATION(dh, dw) \
if (NODEF_OR_EQUAL_3(stride, -1, (dh), (dw))) { \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_backward_weight_kernel \
<scalar_t, accscalar_t, (dh), (dw)> \
<<<grid, block, smem, at::cuda::getCurrentCUDAStream()>>>( \
grad_output_.packed_accessor32<scalar_t, 5>(), \
input_.packed_accessor32<scalar_t, 5>(), \
grad_weight.packed_accessor32<scalar_t, 5>(), \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
} else
#define DWCONV3D_BACKWARD_WEIGHT_DISPATCH_OTHERS \
{ \
using accscalar_t = acc_type<scalar_t, true>; \
conv_depthwise3d_cuda_backward_weight_kernel \
<scalar_t, accscalar_t, -1, -1> \
<<<grid, block, smem, at::cuda::getCurrentCUDAStream()>>>( \
grad_output_.packed_accessor32<scalar_t, 5>(), \
input_.packed_accessor32<scalar_t, 5>(), \
grad_weight.packed_accessor32<scalar_t, 5>(), \
stride[0], stride[1], stride[2], \
padding[0], padding[1], padding[2], \
dilation[0], dilation[1], dilation[2]); \
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
}
std::tuple<Tensor&, Tensor&, Tensor&> _depthwise_3d_backward_cuda_out(
Tensor& grad_input,
Tensor& grad_weight,
Tensor& grad_bias,
const Tensor& grad_output,
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
const std::array<bool, 3> output_mask)
{
TORCH_CHECK(grad_output.device() == input.device() &&
input.device() == weight.device(),
"expects input, weight and grad_output to be on the same device.");
conv_depthwise_shape_check<3>(
input, weight, Tensor() /* undefined */, grad_output,
kernel_size, stride, padding, dilation);
const Tensor grad_output_ = grad_output.contiguous();
const Tensor input_ = input.contiguous();
const Tensor weight_ = weight.contiguous();
Tensor grad_input_ =
(output_mask[0] ? grad_input
: Tensor());
if (output_mask[0]) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(),
"conv_depthwise3d",
[&] {
int64_t num_inputs = grad_input_.numel();
int64_t block = 256;
int64_t grid = std::min((num_inputs - 1) / block + 1, (int64_t)65536);
// Range check to avoid overflow in CUDA kernels.
TORCH_CHECK(grad_input_.numel() <= std::numeric_limits<int32_t>::max(),
"Input tensor is too large.");
TORCH_CHECK(grad_output_.numel() <= std::numeric_limits<int32_t>::max(),
"Output tensor is too large.");
TORCH_CHECK(weight_.numel() <= std::numeric_limits<int32_t>::max(),
"Weight tensor is too large.");
for (int i = 0; i < 3; ++i) {
TORCH_CHECK(padding[i] * 2 + input.size(i + 2) <= std::numeric_limits<int32_t>::max(),
"Padded input tensor is too large.");
}
DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION(
3, 3, 3, 1, 1, 1, 1, 1, 1)
DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION(
3, 3, 3, 1, 1, 1, -1, -1, -1)
DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION(
3, 3, 3, -1, -1, -1, 1, 1, 1)
DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION(
3, 3, 3, -1, -1, -1, -1, -1, -1)
DWCONV3D_BACKWARD_INPUT_DISPATCH_OTHERS
}
);
}
if (output_mask[1]) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
grad_output.scalar_type(),
"conv_depthwise3d",
[&] {
int64_t grid = grad_weight.numel();
int64_t block = 256;
int64_t smem = sizeof(scalar_t) * block;
const int64_t int_max = std::numeric_limits<int32_t>::max();
TORCH_CHECK(grad_input_.numel() <= int_max,
"Input tensor is too large.");
TORCH_CHECK(grad_output_.numel() <= int_max,
"Output tensor is too large.");
TORCH_CHECK(weight_.numel() <= int_max,
"Weight tensor is too large.");
for (int i = 0; i < 3; ++i) {
TORCH_CHECK(padding[i] * 2 + input.size(i + 2) <= int_max,
"Padded input tensor is too large.");
}
TORCH_CHECK(grad_output_.size(0) * grad_output_.size(2) < int_max - block / C10_WARP_SIZE &&
grad_output_.size(3) <= int_max - C10_WARP_SIZE &&
grad_output_.size(4) <= int_max - C10_WARP_SIZE,
"Output size is too large.");
DWCONV3D_BACKWARD_WEIGHT_DISPATCH_SPECIALIZATION(1, 1)
DWCONV3D_BACKWARD_WEIGHT_DISPATCH_SPECIALIZATION(2, 2)
DWCONV3D_BACKWARD_WEIGHT_DISPATCH_OTHERS
}
);
}
if (output_mask[2]) {
grad_bias = grad_output.sum({0, 2, 3, 4});
}
return std::tie(grad_input, grad_weight, grad_bias);
}
std::tuple<Tensor&, Tensor&, Tensor&> conv_depthwise3d_backward_cuda_out(const Tensor& grad_output,
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
Tensor& grad_input,
Tensor& grad_weight,
Tensor& grad_bias) {
if (grad_weight.defined()) {
grad_weight.resize_(weight.sizes());
grad_weight.zero_();
}
return _depthwise_3d_backward_cuda_out(
grad_input,
grad_weight,
grad_bias,
grad_output,
input,
weight,
kernel_size,
stride,
padding,
dilation,
{true,true,true});
}
std::tuple<Tensor, Tensor, Tensor> conv_depthwise3d_backward_cuda(
const Tensor& grad_output,
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
IntArrayRef dilation,
const std::array<bool, 3> output_mask) {
auto options = grad_output.options();
Tensor grad_input =
(output_mask[0] ? at::empty(input.sizes(), options) : Tensor());
Tensor grad_weight =
(output_mask[1] ? at::empty(weight.sizes(), options) : Tensor());
Tensor grad_bias; /* undefined temporarily */
return _depthwise_3d_backward_cuda_out(
grad_input,
grad_weight,
grad_bias,
grad_output,
input,
weight,
kernel_size,
stride,
padding,
dilation,
output_mask
);
}
#undef DWCONV3D_BACKWARD_INPUT_DISPATCH_SPECIALIZATION
#undef DWCONV3D_BACKWARD_INPUT_DISPATCH_OTHERS
#undef NODEF_OR_EQUAL_3
#undef NODEF_OR_EQUAL
}
}