forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLossNLL2d.cpp
485 lines (415 loc) · 15.7 KB
/
LossNLL2d.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/TensorUtils.h>
#include <ATen/native/cpu/utils.h>
#include <ATen/native/Resize.h>
#include <c10/util/irange.h>
namespace at {
namespace native {
namespace {
// Returns a contiguous tensor if the source tensor
// is defined. Otherwise returns the undefined
// source tensor unmodified.
inline Tensor optional_contiguous(const Tensor& source) {
return source.defined() ? source.contiguous() : source;
}
// Returns the address of the first element of a tensor
// or nullptr if the tensor is undefined.
template <typename scalar_t>
inline scalar_t* optional_data(const Tensor& source) {
return source.defined() ? source.data_ptr<scalar_t>() : nullptr;
}
inline void check_inputs_nll_loss2d(
const Tensor& input,
const Tensor& target,
const Tensor& weight) {
TORCH_CHECK(
target.dim() == 3,
"only batches of spatial targets supported (3D tensors)"
" but got targets of dimension: ",
target.dim());
TORCH_CHECK(
input.dim() == 4,
"only batches of spatial inputs supported (4D tensors), "
"but got input of dimension: ",
input.dim());
TORCH_CHECK(
!weight.defined() || weight.numel() == input.size(1),
"weight tensor should be defined either for all or no classes");
const int64_t input0 = input.size(0);
const int64_t input2 = input.size(2);
const int64_t input3 = input.size(3);
const int64_t target0 = target.size(0);
const int64_t target1 = target.size(1);
const int64_t target2 = target.size(2);
TORCH_CHECK(
input0 == target0 && input2 == target1 && input3 == target2,
"size mismatch (got input: ",
input.sizes(),
" , target: ",
target.sizes());
}
inline void check_gradout_shape_nll_loss2d(
const Tensor& grad_output,
const Tensor& target) {
TORCH_CHECK(
grad_output.dim() == 3,
"grad_output must have same dimension as target (3) but got dimension: ",
grad_output.sizes());
const int64_t grad_output0 = grad_output.size(0);
const int64_t grad_output1 = grad_output.size(1);
const int64_t grad_output2 = grad_output.size(2);
const int64_t target0 = target.size(0);
const int64_t target1 = target.size(1);
const int64_t target2 = target.size(2);
TORCH_CHECK(
grad_output0 == target0 && grad_output1 == target1 &&
grad_output2 == target2,
"size mismatch (got grad_output: ",
grad_output.sizes(),
" target: ",
target.sizes());
}
template <typename scalar_t>
static void nll_loss2d_forward_out_frame(
Tensor& output,
Tensor& total_weight,
const Tensor& input,
const Tensor& target,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index) {
const int64_t n_classes = input.size(1);
scalar_t* total_weight_data = total_weight.data_ptr<scalar_t>();
*total_weight_data = 0;
auto weight_contiguous = optional_contiguous(weight);
const scalar_t* weight_data = optional_data<scalar_t>(weight_contiguous);
if (reduction == Reduction::None) {
const int64_t batch_size = input.size(0);
const int64_t H = input.size(2);
const int64_t W = input.size(3);
at::native::resize_output(output, {batch_size, H, W});
auto input_acc = input.accessor<scalar_t, 4>();
auto output_acc = output.accessor<scalar_t, 3>();
auto target_acc = target.accessor<int64_t, 3>();
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (const auto b : c10::irange(start, end)) {
for (const auto h : c10::irange(H)) {
for (const auto w : c10::irange(W)) {
const int64_t cur_target = (int64_t)target_acc[b][h][w];
if (cur_target == ignore_index) {
output_acc[b][h][w] = static_cast<scalar_t>(0);
continue;
}
TORCH_CHECK_INDEX(
cur_target >= 0 && cur_target < n_classes,
"Target ",
cur_target,
" is out of bounds.");
// load optional weight value
const scalar_t cur_weight = weight_data != nullptr
? weight_data[cur_target]
: static_cast<scalar_t>(1);
output_acc[b][h][w] = -input_acc[b][cur_target][h][w] * cur_weight;
}
}
}
});
return;
}
// produce scalar outputs for the reduction case
at::native::resize_output(output, {});
if (target.numel() == 0) {
// Here target (and input) have zero elements
// Mean reduction on empty tensors produces NaN. See the discussion in
// https://github.com/pytorch/pytorch/pull/64572#issuecomment-926504162
if (reduction == Reduction::Mean) {
output.fill_(std::numeric_limits<double>::quiet_NaN());
} else {
output.zero_();
}
total_weight.zero_();
return;
}
auto input_contiguous = input.contiguous();
auto target_contiguous = target.contiguous();
const scalar_t* input_data = input_contiguous.data_ptr<scalar_t>();
const int64_t* target_data = target_contiguous.data_ptr<int64_t>();
const int64_t batch_size = input.size(0);
const int64_t map_size = input.size(2) * input.size(3);
const int64_t sample_size = map_size * n_classes;
const int64_t numiter = batch_size * map_size;
constexpr int64_t cascade_sum_num_levels = 8;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
scalar_t weight_partial_sums[cascade_sum_num_levels] = {0};
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
scalar_t loss_partial_sums[cascade_sum_num_levels] = {0};
const int64_t level_power =
std::max(int64_t(4), utils::CeilLog2(numiter) / cascade_sum_num_levels);
const int64_t level_step = (1 << level_power);
const int64_t level_mask = level_step - 1;
int64_t num_ignored = 0;
for (const auto b : c10::irange(batch_size)) {
for (const auto elem : c10::irange(map_size)) {
const int64_t cur_target = target_data[b * map_size + elem];
if (cur_target == ignore_index) {
++num_ignored;
continue;
}
TORCH_CHECK_INDEX(
cur_target >= 0 && cur_target < n_classes,
"Target ",
cur_target,
" is out of bounds.");
const auto data = input_data[b * sample_size + cur_target * map_size + elem];
if (weight_data) {
const scalar_t weight_val = weight_data[cur_target];
loss_partial_sums[0] -= data * weight_val;
weight_partial_sums[0] += weight_val;
} else {
loss_partial_sums[0] -= data;
}
const int64_t linear_idx = b * map_size + elem;
for (int64_t j = 0; j + 1 < cascade_sum_num_levels; ++j) {
const auto mask = (level_mask << (j * level_power));
if (C10_LIKELY((linear_idx & mask) != 0)) {
break;
}
weight_partial_sums[j + 1] += weight_partial_sums[j];
loss_partial_sums[j + 1] += loss_partial_sums[j];
weight_partial_sums[j] = 0;
loss_partial_sums[j] = 0;
}
}
}
const scalar_t total_weight_val = !weight_data ?
static_cast<scalar_t>(numiter - num_ignored) :
std::accumulate(std::begin(weight_partial_sums),
std::end(weight_partial_sums),
scalar_t{0});
scalar_t output_val = std::accumulate(std::begin(loss_partial_sums),
std::end(loss_partial_sums),
scalar_t{0});
if (reduction == Reduction::Mean) {
output_val /= total_weight_val;
}
*total_weight_data = total_weight_val;
*output.data_ptr<scalar_t>() = output_val;
}
void nll_loss2d_forward_out_cpu_template(
Tensor& output,
Tensor& total_weight,
const Tensor& input,
const Tensor& target,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index) {
check_inputs_nll_loss2d(input, target, weight);
total_weight.resize_({});
AT_DISPATCH_FLOATING_TYPES_AND(
ScalarType::BFloat16,
input.scalar_type(),
"nll_loss2d_forward_out_frame",
[&] {
nll_loss2d_forward_out_frame<scalar_t>(
output,
total_weight,
input,
target,
weight,
reduction,
ignore_index);
});
}
template <typename scalar_t>
static void nll_loss2d_backward_out_frame(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& input,
const Tensor& target,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index,
const Tensor& total_weight) {
auto weight_contiguous = optional_contiguous(weight);
const scalar_t* weight_data = optional_data<scalar_t>(weight_contiguous);
if (reduction == at::Reduction::None) {
check_gradout_shape_nll_loss2d(grad_output, target);
const int64_t batch_size = input.size(0);
const int64_t H = input.size(2);
const int64_t W = input.size(3);
auto grad_input_acc = grad_input.accessor<scalar_t, 4>();
auto grad_output_acc = grad_output.accessor<scalar_t, 3>();
auto target_acc = target.accessor<int64_t, 3>();
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (const auto b : c10::irange(start, end)) {
for (const auto h : c10::irange(H)) {
for (const auto w : c10::irange(W)) {
const int64_t cur_target = target_acc[b][h][w];
if (cur_target == ignore_index) {
continue;
}
const scalar_t value =
-(weight_data ? weight_data[cur_target]
: static_cast<scalar_t>(1));
const scalar_t grad_output_value = grad_output_acc[b][h][w];
grad_input_acc[b][cur_target][h][w] = value * grad_output_value;
}
}
}
});
return;
}
const scalar_t total_weight_value = *total_weight.data_ptr<scalar_t>();
TORCH_CHECK(
grad_output.dim() <= 1 && grad_output.numel() == 1,
"Expected a single element grad_output tensor, but got: ",
grad_output.sizes());
const scalar_t grad_output_value = *grad_output.data_ptr<scalar_t>();
const auto target_contiguous = target.contiguous();
const int64_t* target_data = target_contiguous.data_ptr<int64_t>();
scalar_t* grad_input_data = grad_input.data_ptr<scalar_t>();
const int64_t batch_size = input.size(0);
const int64_t n_classes = input.size(1);
const int64_t map_size = input.size(2) * input.size(3);
const int64_t sample_size = map_size * n_classes;
const auto grad = -(reduction == Reduction::Mean ? grad_output_value / total_weight_value
: grad_output_value);
at::parallel_for(0, batch_size, 0, [&](int64_t start, int64_t end) {
for (const auto b : c10::irange(start, end)) {
for (const auto elem : c10::irange(map_size)) {
const int64_t t = target_data[b * map_size + elem];
if (t != ignore_index) {
TORCH_CHECK_INDEX(t >= 0 && t < n_classes, "Target ", t, " is out of bounds.");
const int64_t index = b * sample_size + t * map_size + elem;
grad_input_data[index] = weight_data != nullptr ? weight_data[t] * grad
: grad;
}
}
}
});
}
void nll_loss2d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& input,
const Tensor& target,
const Tensor& weight,
int64_t reduction,
int64_t ignore_index,
const Tensor& total_weight) {
check_inputs_nll_loss2d(input, target, weight);
grad_input.resize_as_(input);
grad_input.zero_();
TORCH_CHECK(grad_input.is_contiguous(), "grad_input must be contiguous");
TORCH_CHECK(
total_weight.numel() == 1,
"expected total_weight to be a single element tensor, got: ",
total_weight.sizes(),
" (",
total_weight.numel(),
" elements)");
AT_DISPATCH_FLOATING_TYPES_AND(
ScalarType::BFloat16,
input.scalar_type(),
"nll_loss2d_backward_out_frame",
[&] {
nll_loss2d_backward_out_frame<scalar_t>(
grad_input,
grad_output,
input,
target,
weight,
reduction,
ignore_index,
total_weight);
});
}
} // namespace
std::tuple<Tensor&, Tensor&> nll_loss2d_forward_out_cpu(const Tensor& self,
const Tensor& target, const c10::optional<Tensor>& weight_opt,
int64_t reduction,
int64_t ignore_index,
Tensor& output,
Tensor& total_weight) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
nll_loss2d_forward_out_cpu_template(
output, total_weight, self, target, weight, reduction, ignore_index);
return std::tuple<Tensor&, Tensor&>(output, total_weight);
}
std::tuple<Tensor, Tensor> nll_loss2d_forward_cpu(
const Tensor& self,
const Tensor& target, const c10::optional<Tensor>& weight_opt,
int64_t reduction,
int64_t ignore_index) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
auto output = at::empty({0}, self.options());
auto total_weight = at::empty({0}, self.options());
at::native::nll_loss2d_forward_out_cpu(
self, target, weight, reduction, ignore_index, output, total_weight);
return std::make_tuple(output, total_weight);
}
Tensor& nll_loss2d_backward_out_cpu(const Tensor& grad_output,
const Tensor& self,
const Tensor& target, const c10::optional<Tensor>& weight_opt,
int64_t reduction,
int64_t ignore_index,
const Tensor& total_weight,
Tensor& grad_input) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
nll_loss2d_backward_out_cpu_template(
grad_input,
grad_output,
self,
target,
weight,
reduction,
ignore_index,
total_weight);
return grad_input;
}
Tensor nll_loss2d_backward_cpu(
const Tensor& grad_output,
const Tensor& self,
const Tensor& target, const c10::optional<Tensor>& weight_opt,
int64_t reduction,
int64_t ignore_index,
const Tensor& total_weight) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
auto grad_input = at::zeros_like(self);
at::native::nll_loss2d_backward_out_cpu(
grad_output,
self,
target,
weight,
reduction,
ignore_index,
total_weight,
grad_input);
return grad_input;
}
Tensor & nll_loss2d_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor>& weight_opt, int64_t reduction, int64_t ignore_index, Tensor & output) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
Tensor total_weight = at::empty({0}, self.options());
return std::get<0>(at::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
}
Tensor nll_loss2d(const Tensor & self, const Tensor & target, const c10::optional<Tensor>& weight_opt, int64_t reduction, int64_t ignore_index) {
// See [Note: hacky wrapper removal for optional tensor]
c10::MaybeOwned<Tensor> weight_maybe_owned = at::borrow_from_optional_tensor(weight_opt);
const Tensor& weight = *weight_maybe_owned;
return std::get<0>(at::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
}
} // namespace native
} // namespace at