forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForeachUtils.h
139 lines (122 loc) · 5.81 KB
/
ForeachUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#pragma once
#include <ATen/ATen.h>
#include <c10/util/irange.h>
namespace at {
namespace native {
namespace {
// Check if tensor list has either a boolean tensor or a integer tensor
bool has_integral_tensor(TensorList tensors, const bool includeBool) {
return std::any_of(tensors.begin(), tensors.end(),
[&includeBool](const auto & t) { return at::isIntegralType(t.scalar_type(), includeBool); });
}
// check if tensor list has bool tensors
bool has_bool_tensor(TensorList tensors) {
return std::any_of(tensors.begin(), tensors.end(),
[](const auto & t) -> bool { return t.scalar_type() == ScalarType::Bool; });
}
// Check foreach API restrictions
// - Tensor lists must be non-empty.
// - All TensorLists and ScalarLists must have the same number of elements.
// - Corresponding tensors must have the same size.
void check_foreach_api_restrictions(TensorList tensors) {
TORCH_CHECK(tensors.size() > 0, "Tensor list must have at least one tensor.");
}
void check_foreach_api_restrictions(TensorList tensors, ArrayRef<Scalar> scalars) {
check_foreach_api_restrictions(tensors);
TORCH_CHECK(tensors.size() == scalars.size(), "Tensor list must have same number of elements as scalar list.");
}
void check_foreach_api_restrictions(TensorList tensors1, TensorList tensors2) {
TORCH_CHECK(tensors1.size() > 0, "Tensor list must have at least one tensor.");
TORCH_CHECK(tensors2.size() > 0, "Tensor list must have at least one tensor.");
TORCH_CHECK(tensors1.size() == tensors2.size(), "Tensor lists must have the same number of tensors, got ", tensors1.size(), " and ", tensors2.size());
}
void check_foreach_api_restrictions(TensorList tensors1, TensorList tensors2, TensorList tensors3) {
TORCH_CHECK(tensors1.size() > 0, "Tensor list must have at least one tensor.");
TORCH_CHECK(tensors2.size() > 0, "Tensor list must have at least one tensor.");
TORCH_CHECK(tensors3.size() > 0, "Tensor list must have at least one tensor.");
TORCH_CHECK(tensors1.size() == tensors2.size(), "Tensor lists must have the same number of tensors, got ", tensors1.size(), " and ", tensors2.size());
TORCH_CHECK(tensors1.size() == tensors3.size(), "Tensor lists must have the same number of tensors, got ", tensors1.size(), " and ", tensors3.size());
}
void check_foreach_api_restrictions(TensorList tensors1, TensorList tensors2, TensorList tensors3, ArrayRef<Scalar> scalars) {
check_foreach_api_restrictions(tensors1, tensors2, tensors3);
TORCH_CHECK(tensors1.size() == scalars.size(), "Tensor list must have same number of elements as scalar list, got ", tensors1.size(), " and ", scalars.size());
}
// To go via 'fast' path, several conditions must be satisfied
// - All tensors in all lists must have the same dtype.
// - All tensors must be on the same device
// - All tensors must have strided layout
// - All tensors must be non-overlapping and dense
// - Resulting tensor must have the same dtype as the input one
// Please, make sure to call check_foreach_api_restrictions before calling this method.
// There is a set of preconditions that have to be satisfied.
bool check_fast_path_restrictions(
ArrayRef<TensorList> tensorLists,
ArrayRef<Scalar> scalarList = {},
bool does_op_promote_integer_inputs_to_float = false) {
const auto expected_dtype = tensorLists[0][0].dtype();
const auto expected_device = tensorLists[0][0].device();
auto is_tensor_okay = [&](const Tensor& tensor) {
return tensor.dtype() == expected_dtype &&
tensor.device() == expected_device &&
tensor.layout() == at::kStrided &&
tensor.is_non_overlapping_and_dense();
};
for (const auto& tensorList : tensorLists) {
for (const auto& tensor : tensorList) {
if (!is_tensor_okay(tensor)) {
return false;
}
}
}
// Check if corresponding tensors in tensor lists have the same sizes and strides.
for (const auto& tensor_list : tensorLists) {
for (const auto j : c10::irange(tensorLists[0].size())) {
if (tensorLists[0][j].sizes() != tensor_list[j].sizes()) {
return false;
}
if (tensorLists[0][j].strides() != tensor_list[j].strides()) {
return false;
}
}
}
// This function has already checked that `tensorList[j][i]` for all j, i has the same dtype
// using `is_tensor_okay` function above.
// This means we only need to check if {tensorList[0][0], tensorList[0][1], tensorList[0][2], ...}
// do type promotion with scalarLIst.
for (const auto i : c10::irange(tensorLists[0].size())) {
// For division, integer inputs will result in float.
if (does_op_promote_integer_inputs_to_float) {
if (at::isIntegralType(tensorLists[0][i].scalar_type(), /*includeBool*/ true)) {
return false;
}
}
if (scalarList.size() > 0) {
const auto& scalar = scalarList.size() == 1 ? scalarList[0] : scalarList[i];
const auto& tensor = tensorLists[0][i];
// note(mkozuki): This check might be responsible for `_foreach_add(bool_tensors, bool_tensors)`
// being pushed to slow path.
if (tensor.scalar_type() != at::native::result_type(scalar, tensor)) {
return false;
}
}
}
return true;
}
bool can_use_fast_route(ArrayRef<TensorList> tensorLists,
ArrayRef<Scalar> scalarList = {},
bool does_op_promote_integer_inputs_to_float = false) {
#if defined(USE_ROCM)
return false;
#else
return check_fast_path_restrictions(tensorLists, scalarList, does_op_promote_integer_inputs_to_float);
#endif
}
bool can_use_fast_route(TensorList tensors1, TensorList tensors2, bool does_op_promote_integer_inputs_to_float = false) {
#if defined(USE_ROCM)
return false;
#else
return can_use_fast_route({tensors1, tensors2}, {}, does_op_promote_integer_inputs_to_float);
#endif
}
}
}} // at::native