-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGlimpse.py
87 lines (70 loc) · 2.52 KB
/
Glimpse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as NP
def fetch(m, x1, y1, x2, y2):
"""
Fetch a matrix from (x1, y1) (inclusive) to (x2, y2) (exclusive),
filling absent elements with zero.
Both original matrix and new matrix should be square matrices.
"""
if m.shape[0] != m.shape[1]:
raise ValueError("Original matrix should be a square matrix")
size_m = m.shape[0]
width = x2 - x1
height = y2 - y1
if width != height:
raise ValueError("Result matrix should be a square matrix")
result = NP.zeros((width, height)) + 255
left_m = max(x1, 0)
top_m = max(y1, 0)
right_m = min(x2, size_m)
bottom_m = min(y2, size_m)
left_r = left_m - x1
top_r = top_m - y1
right_r = right_m - x1
bottom_r = bottom_m - y1
result[left_r:right_r, top_r:bottom_r] = m[left_m:right_m, top_m:bottom_m]
return result
def glimpse(env, gw, loc):
"""
Returns some glimpses centered at loc=(x,y) of a certain environment.
The glimpses are taken as described in the DeepMind paper.
Parameters:
@env: Environment matrix
@gw: Width of the inner-most glimpse.
The number of glimpses is floor(log2(env.width / gw))
if @gw is even. Currently this implementation doesn't
accept odd @gw.
@loc: Center position, which would be automatically rounded to
something like (6.5, 7.5)
Returns:
A list of gw*gw matrices, each represents a glimpse, from
inner to outer.
"""
# Check validity of x and y
if gw % 2 == 1:
raise ValueError("Odd @gw not supported")
x, y = loc[0], loc[1]
x = round(x - 0.5) + 0.5
y = round(y - 0.5) + 0.5
size = env.shape[0]
stride = 1
res = []
k = gw
while k <= size:
left = (int(round(2 * x)) - k + 1) / 2
right = (int(round(2 * x)) + k - 1) / 2
top = (int(round(2 * y)) - k + 1) / 2
bottom = (int(round(2 * y)) + k - 1) / 2
try:
M = fetch(env, left, top, right + 1, bottom + 1)
R = NP.zeros((gw, gw))
for i in range(0, gw):
for j in range(0, gw):
R[i, j] = M[i*stride:(i+1)*stride, j*stride:(j+1)*stride].sum() / (stride ** 2)
except:
#print 'Fetching %d,%d-%d,%d' % (left, top, right, bottom)
#print 'center=', (x, y), ', k=%d, stride=%d, gw=%d' % (k, stride, gw)
R = NP.zeros((gw, gw))
res.append(R)
k = k * 2
stride = stride * 2
return res