-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtester.py
92 lines (72 loc) · 3.39 KB
/
tester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import skimage.io as io
import torch
import torch.nn as nn
import torch.nn.functional as F
from data import generate_loader
from tqdm import tqdm
from utils import calculate_mae
class Tester():
def __init__(self, module, opt):
self.opt = opt
self.dev = torch.device("cuda:{}".format(opt.GPU_ID) if torch.cuda.is_available() else "cpu")
self.net = module.Net(opt)
self.net = self.net.to(self.dev)
msg = "# params:{}\n".format(
sum(map(lambda x: x.numel(), self.net.parameters())))
print(msg)
self.test_loader = generate_loader("test", opt)
@torch.no_grad()
def evaluate(self, path):
opt = self.opt
try:
print('loading model from: {}'.format(path))
self.load(path)
except Exception as e:
print(e)
self.net.eval()
if opt.save_result:
save_root = os.path.join(opt.save_root, opt.save_msg)
os.makedirs(save_root, exist_ok=True)
mae = 0
for i, inputs in enumerate(tqdm(self.test_loader)):
MASK = inputs[0].to(self.dev)
IMG = inputs[1].to(self.dev)
NAME = inputs[2][0]
b, c, h, w = MASK.shape
pred = self.net(IMG)
mask = (MASK*255.).squeeze().detach().cpu().numpy().astype('uint8')
pred_sal = F.pixel_shuffle(pred[-1], 4)
pred_sal = F.interpolate(pred_sal, (h,w), mode='bilinear', align_corners=False)
pred_sal = torch.sigmoid(pred_sal).squeeze()
pred_sal = (pred_sal * 255.).detach().cpu().numpy().astype('uint8')
matt_img = pred[0].repeat(1,256,1,1)
matt_img = F.pixel_shuffle(matt_img, 16)
matt_img = F.interpolate(matt_img, (h,w), mode='bilinear', align_corners=False)
matt_img = torch.sigmoid(matt_img)
matt_img = (matt_img*255.).squeeze().detach().cpu().numpy().astype('uint8')
if opt.save_result:
save_path_msk = os.path.join(save_root, "{}_msk.png".format(NAME))
save_path_matt = os.path.join(save_root, "{}_matt.png".format(NAME))
io.imsave(save_path_msk, mask)
io.imsave(save_path_matt, matt_img)
if opt.save_all:
for idx, sal in enumerate(pred[1:]):
scale=224//(sal.shape[-1])
sal_img = F.pixel_shuffle(sal,scale)
sal_img = F.interpolate(sal_img, (h,w), mode='bilinear', align_corners=False)
sal_img = torch.sigmoid(sal_img)
sal_path = os.path.join(save_root, "{}_sal_{}.png".format(NAME, idx))
sal_img = sal_img.squeeze().detach().cpu().numpy()
sal_img = (sal_img * 255).astype('uint8')
io.imsave(sal_path, sal_img)
else:
# save pred image
save_path_sal = os.path.join(save_root, "{}_sal.png".format(NAME))
io.imsave(save_path_sal, pred_sal)
mae += calculate_mae(mask, pred_sal)
return mae/(len(self.test_loader)*255.)
def load(self, path):
state_dict = torch.load(path, map_location=lambda storage, loc: storage)
self.net.load_state_dict(state_dict)
return