-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise-sheet-3.Rmd
377 lines (214 loc) · 6.42 KB
/
exercise-sheet-3.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
```{r, include=FALSE}
source("custom_functions.R")
library(flextable)
library(officer)
```
---
title: "Exercise sheet 3: Sequence Alignment"
---
---------------------------------
# Exercise 1 - Alignments
For the given examples which ones can be called alignments:
### 1a)
```
AGTTTTTT
AGGTTTTT
```
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
True
:::
#### {-}
### 1b)
```
CCGTTTTTT
-AGGTTTTT
```
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
True
:::
####
### 1c)
```
CCCGTTTTTTGC
-CGGTTTTT
```
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
False. In an alignment both strings must have the same length
:::
#### {-}
### 1d)
```
AG--TTTTTT
AG-GTTTTTT
```
#### {.tabset}
##### Hide
##### Solution
::: {.answer data-latex=""}
False. Gaps cannot be aligned with gaps
:::
#### {-}
# Exercise 2 - Hands on Needleman-Wunsch algorithm
The Needleman-Wunsch algorithm enables the calculation of the optimal pairwise sequence alignment with linear gap cost. Given the following two sequences S1, S2 and the given cost function complete the tasks *A-D*.
::: {.answer data-latex=""}
\begin{align}
S1 &= TACGCGC\\
S2 &= TCCGA
\end{align}
$$
w(x,y)=
\begin{cases}
+ 1 & if\ x = `-`\ \vee\ y=`-`\\
- 1 & if\ x = y \\
0 & else\\
\end{cases}
$$
:::
```{r, include=FALSE}
zm <- data.frame(a = c("-", "T", "A", "C", "G", "C", "G", "C"),
b = c(" ", " ", " ", " ", " ", " ", " ", " "),
c = c(" ", " ", " ", " ", " ", " ", " ", " "),
d = c(" ", " ", " ", " ", " ", " ", " ", " "),
e = c(" ", " ", " ", " ", " ", " ", " ", " "),
f = c(" ", " ", " ", " ", " ", " ", " ", " "),
g = c(" ", " ", " ", " ", " ", " ", " ", " "))
names(zm) <- c("D_{i,j}", "-", "T1", "C1", "C2", "G1", "A1")
```
```{r, results="asis", include=knitr::is_html_output(), echo=FALSE}
zm_ft <- flextable(zm)
zm_ft <- custom_theme(zm_ft)
index_replace(zm_ft)
```
### 2a)
Complete the provided table with the correct initialization step.
#### {.tabset}
##### Hide
##### Hint1: Formulae
\begin{align}
D_{0,0} &= 0\\
\forall i \leq |S1|: D_{i,0} &= \sum_{k=1}^{i} w(S1_i, -) \\
\forall j \leq |S2|: D_{0,j} &= \sum_{k=1}^{j} w(-, S2_j)
\end{align}
##### Solution
```{r, include=FALSE}
zm <- data.frame(a = c( "-", "T", "A", "C", "G", "C", "G", "C"),
b = c(0, 1, 2, 3, 4, 5, 6, 7),
c = c(1, " ", " ", " ", " ", " ", " ", " "),
d = c(2, " ", " ", " ", " ", " ", " ", " "),
e = c(3, " ", " ", " ", " ", " ", " ", " "),
f = c(4, " ", " ", " ", " ", " ", " ", " "),
g = c(5, " ", " ", " ", " ", " ", " ", " "))
names(zm) <- c("D_{i,j}", "-", "T1", "C1", "C2", "G1", "A1")
```
```{r, results="asis", include=knitr::is_html_output(), echo=FALSE}
zm_ft <- flextable(zm)
zm_ft <- custom_theme(zm_ft)
index_replace(zm_ft)
```
#### {-}
### 2b)
#### {.tabset}
##### Hide
Using dynamic programming technique fill in all values in the matrix.
##### Hint1: Formulae
$$
\forall\ i,j >0\ : D_{i,j}=min
\begin{cases}
D_{i-1,j-1} + w(S1_i, S2_j)\\
D_{i,j-1} + w(-, S2_j) \\
D_{i-1,j} + w(S1_i, -)
\end{cases}
$$
##### Solution
```{r, include=FALSE}
zm <- data.frame(a = c( "-", "T", "A", "C", "G", "C", "G", "C"),
b = c(0, 1, 2, 3, 4, 5, 6, 7),
c = c(1, -1, 0, 1, 2, 3, 4, 5),
d = c(2, 0, -1, -1, 0, 1, 2, 3),
e = c(3, 1, 0, -2, -1, -1, 0, 1),
f = c(4, 2, 1, -1, -3, -2, -2, -1),
g = c(5, 3, 1, 0, -2, -3, -2, -2))
names(zm) <- c("D_{i,j}", "-", "T1", "C1", "C2", "G1", "A1")
```
```{r, results="asis", include=knitr::is_html_output(), echo=FALSE}
zm_ft <- flextable(zm)
zm_ft <- custom_theme(zm_ft)
index_replace(zm_ft)
```
#### {-}
### 2c)
Using the matrix from 1B) find the optimal alignment of the given sequences.
#### {.tabset}
##### Hide
##### Solution
```
TACGCGC
| | ||:
T-C-CGA
```
#### {-}
### 2d)
Find an optimal alignment of the given sequences, while assuming that the first G character in each sequence has to be matched/aligned.
#### {.tabset}
##### Hide
##### Hint1:
You can split the alignment at the G and treat it as two separate alignments
##### Solution
```
TACGCGC TACGCGC TACGCGC
|:||| |:|| : |:|| :
TCCGA-- TCCG-A- TCCG--A
```
#### {-}
# Exercise 3 - Hirschberg recursion
Which statements about Needleman-Wunsch and the Hirschberg recursion are True
and which are False.
### 3a)
#### {.tabset}
##### Statements
- [ ] Hirschberg computes global alignment in O(n²) space.
- [ ] Needleman-Wunsch computes global alignment in O(n²) time.
- [ ] The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm.
- [ ] Hirschberg computes global alignment in O(n) time.
##### Solution
- [ ] Hirschberg computes global alignment in O(n²) space.
- [x] Needleman-Wunsch computes global alignment in O(n²) time.
- [x] The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm.
- [ ] Hirschberg computes global alignment in O(n) time.
#### {-}
---------------------------------
# Exercise 4 - Programming assignment
Programming assignments are available via Github Classroom and contain automatic tests.
We recommend doing these assignments since they will help you to further understand this topic.
Access the Github Classroom link: [Programming Assignment: Sheet 03](https://classroom.github.com/a/UO2CjiPj).
-------------------------------------------
# Preparing for the Exam
Below you find an interactive tool that allows you to create dynamic programming matrices to practice for the exam.
You can fill in the table and check which values are correct via the Check Matrix button. Correctly filled cells will turn green.
For now this tool only supports the maximization approach.
:::: {#explaining .warning-box }
::: {#note-exp .warning-header}
```{r, include=knitr::is_html_output(), echo=FALSE,}
knitr::include_graphics("figures/warningicon.svg")
```
**Warning**
:::
::: {#note-exp .note-body}
This tool is in beta and might contain bugs.
:::
::::
```{r, echo=FALSE}
htmltools::includeHTML("html/needlemanwunsch.html")
```
```{r, echo=FALSE}
htmltools::tags$script(src = "assets/js/needlemanwunsch.js", type= "text/javascript")
```