Skip to content

Latest commit

 

History

History
256 lines (185 loc) · 9.26 KB

README.md

File metadata and controls

256 lines (185 loc) · 9.26 KB

LLM-Aided OCR Project: In-Depth Technical Overview

Introduction

The LLM-Aided OCR Project is an advanced system designed to significantly enhance the quality of Optical Character Recognition (OCR) output. By leveraging cutting-edge natural language processing techniques and large language models (LLMs), this project transforms raw OCR text into highly accurate, well-formatted, and readable documents.

Example Outputs

To see what the LLM-Aided OCR Project can do, check out these example outputs:

Features

  • PDF to image conversion
  • OCR using Tesseract
  • Advanced error correction using LLMs (local or API-based)
  • Smart text chunking for efficient processing
  • Markdown formatting option
  • Header and page number suppression (optional)
  • Duplicate content removal
  • Quality assessment of the final output
  • Support for both local LLMs and cloud-based API providers (OpenAI, Anthropic)
  • Asynchronous processing for improved performance
  • Detailed logging for process tracking and debugging
  • GPU acceleration for local LLM inference

Detailed Technical Overview

PDF Processing and OCR

  1. PDF to Image Conversion

    • Function: convert_pdf_to_images()
    • Uses pdf2image library to convert PDF pages into images
    • Supports processing a subset of pages with max_pages and skip_first_n_pages parameters
  2. OCR Processing

    • Function: ocr_image()
    • Utilizes pytesseract for text extraction
    • Includes image preprocessing with preprocess_image() function:
      • Converts image to grayscale
      • Applies binary thresholding using Otsu's method
      • Performs dilation to enhance text clarity

Text Processing Pipeline

  1. Chunk Creation

    • The process_document() function splits the full text into manageable chunks
    • Uses sentence boundaries for natural splits
    • Implements an overlap between chunks to maintain context
  2. Error Correction and Formatting

    • Core function: process_chunk()
    • Two-step process: a. OCR Correction:
      • Uses LLM to fix OCR-induced errors
      • Maintains original structure and content b. Markdown Formatting (optional):
      • Converts text to proper markdown format
      • Handles headings, lists, emphasis, and more
  3. Duplicate Content Removal

    • Implemented within the markdown formatting step
    • Identifies and removes exact or near-exact repeated paragraphs
    • Preserves unique content and ensures text flow
  4. Header and Page Number Suppression (Optional)

    • Can be configured to remove or distinctly format headers, footers, and page numbers

LLM Integration

  1. Flexible LLM Support

    • Supports both local LLMs and cloud-based API providers (OpenAI, Anthropic)
    • Configurable through environment variables
  2. Local LLM Handling

    • Function: generate_completion_from_local_llm()
    • Uses llama_cpp library for local LLM inference
    • Supports custom grammars for structured output
  3. API-based LLM Handling

    • Functions: generate_completion_from_claude() and generate_completion_from_openai()
    • Implements proper error handling and retry logic
    • Manages token limits and adjusts request sizes dynamically
  4. Asynchronous Processing

    • Uses asyncio for concurrent processing of chunks when using API-based LLMs
    • Maintains order of processed chunks for coherent final output

Token Management

  1. Token Estimation

    • Function: estimate_tokens()
    • Uses model-specific tokenizers when available
    • Falls back to approximate_tokens() for quick estimation
  2. Dynamic Token Adjustment

    • Adjusts max_tokens parameter based on prompt length and model limits
    • Implements TOKEN_BUFFER and TOKEN_CUSHION for safe token management

Quality Assessment

  1. Output Quality Evaluation
    • Function: assess_output_quality()
    • Compares original OCR text with processed output
    • Uses LLM to provide a quality score and explanation

Logging and Error Handling

  • Comprehensive logging throughout the codebase
  • Detailed error messages and stack traces for debugging
  • Suppresses HTTP request logs to reduce noise

Configuration and Customization

The project uses a .env file for easy configuration. Key settings include:

  • LLM selection (local or API-based)
  • API provider selection
  • Model selection for different providers
  • Token limits and buffer sizes
  • Markdown formatting options

Output and File Handling

  1. Raw OCR Output: Saved as {base_name}__raw_ocr_output.txt
  2. LLM Corrected Output: Saved as {base_name}_llm_corrected.md or .txt

The script generates detailed logs of the entire process, including timing information and quality assessments.

Requirements

  • Python 3.12+
  • Tesseract OCR engine
  • PDF2Image library
  • PyTesseract
  • OpenAI API (optional)
  • Anthropic API (optional)
  • Local LLM support (optional, requires compatible GGUF model)

Installation

  1. Install Pyenv and Python 3.12 (if needed):
# Install Pyenv and python 3.12 if needed and then use it to create venv:
if ! command -v pyenv &> /dev/null; then
    sudo apt-get update
    sudo apt-get install -y build-essential libssl-dev zlib1g-dev libbz2-dev \
    libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev \
    xz-utils tk-dev libffi-dev liblzma-dev python3-openssl git

    git clone https://github.com/pyenv/pyenv.git ~/.pyenv
    echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.zshrc
    echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.zshrc
    echo 'eval "$(pyenv init --path)"' >> ~/.zshrc
    source ~/.zshrc
fi
cd ~/.pyenv && git pull && cd -
pyenv install 3.12
  1. Set up the project:
# Use pyenv to create virtual environment:
git clone https://github.com/Dicklesworthstone/llm_aided_ocr    
cd llm_aided_ocr          
pyenv local 3.12
python -m venv venv
source venv/bin/activate
python -m pip install --upgrade pip
python -m pip install wheel
python -m pip install --upgrade setuptools wheel
pip install -r requirements.txt
  1. Install Tesseract OCR engine (if not already installed):

    • For Ubuntu: sudo apt-get install tesseract-ocr
    • For macOS: brew install tesseract
    • For Windows: Download and install from GitHub
  2. Set up your environment variables in a .env file:

    USE_LOCAL_LLM=False
    API_PROVIDER=OPENAI
    OPENAI_API_KEY=your_openai_api_key
    ANTHROPIC_API_KEY=your_anthropic_api_key
    

Usage

  1. Place your PDF file in the project directory.

  2. Update the input_pdf_file_path variable in the main() function with your PDF filename.

  3. Run the script:

    python llm_aided_ocr.py
    
  4. The script will generate several output files, including the final post-processed text.

How It Works

The LLM-Aided OCR project employs a multi-step process to transform raw OCR output into high-quality, readable text:

  1. PDF Conversion: Converts input PDF into images using pdf2image.

  2. OCR: Applies Tesseract OCR to extract text from images.

  3. Text Chunking: Splits the raw OCR output into manageable chunks for processing.

  4. Error Correction: Each chunk undergoes LLM-based processing to correct OCR errors and improve readability.

  5. Markdown Formatting (Optional): Reformats the corrected text into clean, consistent Markdown.

  6. Quality Assessment: An LLM-based evaluation compares the final output quality to the original OCR text.

Code Optimization

  • Concurrent Processing: When using API-based models, chunks are processed concurrently to improve speed.
  • Context Preservation: Each chunk includes a small overlap with the previous chunk to maintain context.
  • Adaptive Token Management: The system dynamically adjusts the number of tokens used for LLM requests based on input size and model constraints.

Configuration

The project uses a .env file for configuration. Key settings include:

  • USE_LOCAL_LLM: Set to True to use a local LLM, False for API-based LLMs.
  • API_PROVIDER: Choose between "OPENAI" or "CLAUDE".
  • OPENAI_API_KEY, ANTHROPIC_API_KEY: API keys for respective services.
  • CLAUDE_MODEL_STRING, OPENAI_COMPLETION_MODEL: Specify the model to use for each provider.
  • LOCAL_LLM_CONTEXT_SIZE_IN_TOKENS: Set the context size for local LLMs.

Output Files

The script generates several output files:

  1. {base_name}__raw_ocr_output.txt: Raw OCR output from Tesseract.
  2. {base_name}_llm_corrected.md: Final LLM-corrected and formatted text.

Limitations and Future Improvements

  • The system's performance is heavily dependent on the quality of the LLM used.
  • Processing very large documents can be time-consuming and may require significant computational resources.

Contributing

Contributions to this project are welcome! Please fork the repository and submit a pull request with your proposed changes.

License

This project is licensed under the MIT License.