-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSatellite_Date_Intersector.py
54 lines (47 loc) · 2.28 KB
/
Satellite_Date_Intersector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point
import yaml
import argparse
import statistics
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='Configuration file', default='configs.yaml')
args = parser.parse_args()
config_file = args.config
if config_file is None:
raise ValueError("Please provide a configuration file")
# read the yaml config file
with open(config_file, 'r') as f:
config = yaml.safe_load(f)
reach_ids_path = config['reach_ids_path']
return_period = config['return_period']
SAR_dates_path = config['SAR_dates_path']
Master_SAR_dates_path = config['Master_SAR_dates_path']
latlons_df = pd.read_parquet(reach_ids_path)
points_gdf = gpd.GeoDataFrame(latlons_df, geometry=gpd.points_from_xy(latlons_df.lon, latlons_df.lat))
export_gdf = gpd.GeoDataFrame()
orbits = ['ASC', 'DES']
years = [2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024]
months = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
#match the points with the images in every year
for i in years:
for j in months:
imgs_dates = gpd.read_parquet(Master_SAR_dates_path + str(i) + '_' + str(j) + '.parquet')
points_dates_gdf = gpd.sjoin(points_gdf, imgs_dates, how='inner', predicate='covered_by')
points_dates_gdf = points_dates_gdf.rename(columns={'index_right': 'date'})
export_gdf = pd.concat([export_gdf, points_dates_gdf])
export_gdf['date'] = pd.to_datetime(export_gdf['date'])
export_gdf.to_parquet(SAR_dates_path, index=False)
# export_gdf.to_file(SAR_dates_path.replace('.parquet', '_' + j + '.gpkg'), driver='GPKG', index=False)
print("SAR dates saved to ", SAR_dates_path)
# test_gdf = gpd.read_parquet(SAR_dates_path)
# print(test_gdf.columns)
# print data for v2number 710625280
v2numbers = export_gdf['v2number'].unique()
count = []
for i in v2numbers:
count.append(export_gdf[export_gdf['v2number'] == i].shape[0])
print(count)
print(min(count), statistics.mean(count), statistics.median(count), max(count), statistics.quantiles(count, n=4))
#print(test_gdf[test_gdf['v2number'] == 710625280].reset_index(drop=True))