-
Notifications
You must be signed in to change notification settings - Fork 1
/
homophily.py
150 lines (130 loc) · 5.16 KB
/
homophily.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
import torch
# from torch_scatter import scatter_add
# from torch_geometric.utils import remove_self_loops
def edge_homophily(adj, label):
"""
gives edge homophily, i.e. proportion of edges that are intra-class
compute homophily of classes in labels vector
See Zhu et al. 2020 "Beyond Homophily ..."
"""
adj = (adj > 0).float()
adj = adj - torch.diag(torch.diag(adj))
label = label.unsqueeze(-1).float()
label_adj = torch.mm(label, label.transpose(0, 1))
edge_hom = torch.sum(label_adj * adj) / torch.sum(adj)
return edge_hom
def compat_matrix(A, labels):
"""
c x c compatibility matrix, where c is number of classes
H[i,j] is proportion of endpoints that are class j
of edges incident to class i nodes
See Zhu et al. 2020
"""
c = len(np.unique(labels))
H = np.zeros((c, c))
src_node, targ_node = A.nonzero()
for i in range(len(src_node)):
src_label = labels[src_node[i]]
targ_label = labels[targ_node[i]]
H[src_label, targ_label] += 1
H = H / np.sum(H, axis=1, keepdims=True)
return H
def node_homophily(A, labels):
"""average of homophily for each node"""
A = A - torch.diag(torch.diag(A))
src_node, targ_node = A.nonzero()[:, 0], A.nonzero()[:, 1]
edge_idx = torch.tensor(
np.vstack((src_node.cpu(), targ_node.cpu())), dtype=torch.long
).contiguous()
labels = torch.tensor(labels)
num_nodes = A.shape[0]
return node_homophily_edge_idx(edge_idx, labels.cpu(), num_nodes)
def node_homophily_abs(A, labels):
"""average of homophily for each node"""
A = A - torch.diag(torch.diag(A))
src_node, targ_node = A.nonzero()[:, 0], A.nonzero()[:, 1]
edge_idx = torch.tensor(
np.vstack((src_node.cpu(), targ_node.cpu())), dtype=torch.long
).contiguous()
labels = torch.tensor(labels)
num_nodes = A.shape[0]
return node_homophily_edge_idx_abs(edge_idx, labels.cpu(), num_nodes)
def node_homophily_edge_idx(edge_index, labels, num_nodes):
"""edge_idx is 2 x(number edges)"""
# edge_index = remove_self_loops(edge_idx)[0]
hs = torch.zeros(num_nodes)
degs = torch.bincount(edge_index[0, :]).float()
matches = (labels[edge_index[0, :]] == labels[edge_index[1, :]]).float()
hs = hs.scatter_add(0, edge_index[0, :], matches) / degs
return hs[degs != 0].mean()
def node_homophily_edge_idx_abs(edge_index, labels, num_nodes):
"""edge_idx is 2 x(number edges)"""
# edge_index = remove_self_loops(edge_idx)[0]
hs = torch.zeros(num_nodes)
degs = torch.bincount(edge_index[0, :]).float()
matches = (labels[edge_index[0, :]] == labels[edge_index[1, :]]).float()
mismatches = (labels[edge_index[0, :]] != labels[edge_index[1, :]]).float()
hs1 = hs.scatter_add(0, edge_index[0, :], matches)
hs2 = hs.scatter_add(0, edge_index[0, :], mismatches)
h = torch.abs(hs1 - hs2) / degs
return h[degs != 0].mean()
def compat_matrix_edge_idx(edge_index, labels):
"""
c x c compatibility matrix, where c is number of classes
H[i,j] is proportion of endpoints that are class j
of edges incident to class i nodes
"Generalizing GNNs Beyond Homophily"
treats negative labels as unlabeled
"""
# edge_index = remove_self_loops(edge_idx)[0]
src_node, targ_node = edge_index[:, 0], edge_index[:, 1]
labeled_nodes = (labels[src_node] >= 0) * (labels[targ_node] >= 0)
label = labels.squeeze()
c = label.max() + 1
H = torch.zeros((c, c)).to(edge_index.device)
src_label = label[src_node[labeled_nodes]]
targ_label = label[targ_node[labeled_nodes]]
label_idx = torch.cat((src_label.unsqueeze(0), targ_label.unsqueeze(0)), axis=0)
for k in range(c):
sum_idx = torch.where(src_label == k)[0]
add_idx = targ_label[sum_idx]
H[k, :].scatter_add_(
src=torch.ones_like(add_idx).to(H.dtype), dim=-1, index=add_idx
)
H = H / torch.sum(H, axis=1, keepdims=True)
return H
def class_homophily(A, label):
"""
our measure \hat{h}
treats negative labels as unlabeled
"""
A = A - torch.diag(torch.diag(A))
A = A + torch.diag((torch.sum(A, 1) == 0).float())
edge_index = A.nonzero()
label = label.squeeze()
c = label.max() + 1
H = compat_matrix_edge_idx(edge_index, label)
nonzero_label = label[label >= 0]
counts = nonzero_label.unique(return_counts=True)[1]
proportions = counts.float() / nonzero_label.shape[0]
val = 0
for k in range(c):
class_add = torch.clamp(H[k, k] - proportions[k], min=0)
if not torch.isnan(class_add):
# only add if not nan
val += class_add
val /= c - 1
return val
def aggregation_homophily(features, adj, label, modified=True):
inner_prod = torch.mm(
torch.mm(adj, features), torch.mm(adj, features).transpose(0, 1)
)
# labels = torch.argmax(label, 1)
labels = label
weight_matrix = torch.zeros(
adj.clone().detach().size(0), labels.clone().detach().max() + 1
)
for i in range(labels.max() + 1):
weight_matrix[:, i] = torch.mean(inner_prod[:, labels == i], 1)
return torch.mean(torch.argmax(weight_matrix, 1).eq(labels.cpu()).float())