-
Notifications
You must be signed in to change notification settings - Fork 0
/
JTA_FFT_try.py
executable file
·948 lines (739 loc) · 35.4 KB
/
JTA_FFT_try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
## JTA_FFT.py
# Copyright (c) Scott Banks [email protected], Andrew Jensen [email protected]
# Imports
# from typing import OrderedDict
#from numpy.fft.helper import fftshift
#from numpy.lib.nanfunctions import _nansum_dispatcher
from PIL import Image
import vtk
import numpy as np
import math
from vtk.util import numpy_support
import cv2
from scipy.interpolate import splprep, splev
import matplotlib.pyplot as plt
import pickle
from skimage import io
from collections import OrderedDict
import os
from rotation_utility import *
import time
import nvtx
import scipy.interpolate as si
import open3d as o3d
# TODO: look into vtk-m
class JTA_FFT():
def __init__(self, CalFile):
# Some of the coding variables
self.max_num_norms = 5
# Number of Fourier Coefficients
self.nsamp = 128
# old was 128
self.index_vect = np.linspace(-self.nsamp/2 + 1, self.nsamp/2, self.nsamp)
# Library Increment Parameters
self.xrotmax = 30
self.xrotinc = 3
self.yrotmax = 30
self.yrotinc = 3
self.use_splprep = False
# Image Size
self.imsize = 1024
# Load in calibration file and check for proper formatting
cal_data = np.loadtxt(CalFile, skiprows=1)
self.CalFile = CalFile
with open(CalFile, "r") as cal:
if (cal.readline().strip() != "JT_INTCALIB"):
raise Exception("Error! The provided calibration file has an incorrect header.")
# Extracting the four components from the calibration file
try:
for idx, val in enumerate(cal_data):
float(val)
if val <= 0 and idx != 1 and idx != 2:
raise Exception("Error! Principal distance or scale is <= 0!")
except ValueError as error:
print("Error! ", error, " is not a float!")
# principal distance
pd = cal_data[0]
self.pd = pd
# scale (mm/px)
sc = cal_data[3]
self.sc = sc
# x and y offset
xo = cal_data[1]
yo = cal_data[2]
self.xo = xo
self.yo = yo
# store parameters as a dictionary in case you ever want to reference them
self.params = {'nsamp':self.nsamp,
'xrotmax': self.xrotmax,
'xrotinc': self.xrotinc,
'yrotmax': self.yrotmax,
'yrotinc': self.yrotinc,
'imsize': self.imsize,
'pd': self.pd,
'sc': self.sc,
'xo': self.xo,
'yo': self.yo}
# Initialize some of the viewing and rending windows in the initialization
isc = 1/self.sc # inverse scale [px/mm]
fx = self.pd/self.sc # scale pd into pixel units
fy = fx # same pd in x and y
cx = self.imsize/2 # project to image center
cy = cx # same x and y image center
w = self.imsize # assume square image
h = self.imsize # assume square image
self.isc = isc
self.fx = fx
@nvtx.annotate("create_projection", color = "purple")
def create_projection(self, STLFile,renWin, renderer, transformFilter, stl_mapper, xr,yr,zr, translation = None):
# Takes in a path to an STL model, and generates a contour library based on it.
# This saves the generated rotation indices to self, and returns the x and y arrays of contours.
n = lambda a: int(np.where(self.index_vect == a)[0][0])
A = lambda a: int(self.index_vect[a])
'''
This is the function that creates the libraries for the contours. Meaning, it will take the current model and project/sample the contour to make a shape library
'''
# Define Rotations for library
xrot = np.linspace(int(-1*self.xrotmax),
int(self.xrotmax),
int((2*self.xrotmax/self.xrotinc))+1)
yrot = np.linspace(int(-1*self.yrotmax),
int(self.yrotmax),
int((2*self.yrotmax/self.yrotinc))+1)
## Create output arrays for contours
# xout = np.zeros([int((2*self.xrotmax/self.xrotinc)+1),
# int((2*self.yrotmax/self.yrotinc)+1),
# self.nsamp])
#
# yout = np.zeros([int((2*self.xrotmax/self.xrotinc)+1),
# int((2*self.yrotmax/self.yrotinc)+1),
# self.nsamp])
# Create array to store rotation indices
rot_indices = np.empty([xrot.size,yrot.size,2])
# Create for-loop to run through each of the rotation combinations
# Transform the STL model based on the current rotation
rng_vtk_proj = nvtx.start_range(message= "vtk_projection")
transform = vtk.vtkTransform()
transform.PostMultiply()
transform.Scale(self.isc,self.isc,self.isc)
transform.RotateY(yr)
transform.RotateX(xr)
transform.RotateZ(zr)
if translation is not None:
xt = translation[0] / self.sc
yt = translation[1] / self.sc
zt = translation[2] / self.sc
transform.Translate(xt, yt, zt)
else:
transform.Translate(0, 0, -0.9*self.fx)
transformFilter.SetTransform(transform)
transformFilter.Update()
stl_actor = vtk.vtkActor()
stl_actor.SetMapper(stl_mapper)
renderer.AddActor(stl_actor)
renderer.SetBackground(0.0, 0.0, 0.0)
renWin.AddRenderer(renderer)
renWin.SetSize(self.imsize,self.imsize)
renWin.Render()
nvtx.end_range(rng_vtk_proj)
# nder the scene into a numpy array for openCV processing
rng_vtk_image = nvtx.start_range(message="vtk_image_creation")
winToIm = vtk.vtkWindowToImageFilter()
winToIm.SetInput(renWin)
winToIm.Update()
vtk_image = winToIm.GetOutput()
nvtx.end_range(rng_vtk_image)
rng_image_processing = nvtx.start_range(message = "image processing")
width, height, channels = vtk_image.GetDimensions()
vtk_array = vtk_image.GetPointData().GetScalars()
components = vtk_array.GetNumberOfComponents()
arr = cv2.flip(numpy_support.vtk_to_numpy(vtk_array).reshape(height,width,components),0)
arr = cv2.cvtColor(arr, cv2.COLOR_BGR2GRAY)
_, binary = cv2.threshold(arr, 1, 255, cv2.THRESH_BINARY)
kernel = np.ones((5,5),np.uint8)
binary = cv2.dilate(binary, kernel, iterations = 1)
binary = cv2.erode(binary, kernel, iterations = 1)
# t the contours of the created projection blob
contours, hierarchy = cv2.findContours(binary,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
nvtx.end_range(rng_image_processing)
# Loop through the contours to only grab the larges
rng_interp = nvtx.start_range(message = "interpolation")
for contour in contours:
x,y = contour.T
# Convert from numpy arrays to normal arrays
x = x.tolist()[0]
y = y.tolist()[0]
if len(x) > 200:
if self.use_splprep:
# Resample contour in nsamp equispaced increments using spline interpolation
# https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.splprep.html
tck, u = splprep([x,y], u=None, s=1.0, per=1)
# https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linspace.html
u_new = np.linspace(u.min(), u.max(), self.nsamp)
# https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.splev.html
x_new, y_new = splev(u_new, tck, der=0)
else:
cv = np.array([x,y])
p = self.bspline(cv.T,periodic=True)
x_new,y_new = p.T
# Convert it back to numpy format for opencv to be able to display it
#fig, ax = plt.subplots(figsize = (10,10))
#plt.plot(x_new,self.imsize-y_new)
#ax.set_aspect('equal')
#plt.show()
# break code if you are done
break
else:
x_new = 0
y_new = 0
nvtx.end_range(rng_interp)
return x_new, y_new
@nvtx.annotate("create_NFD_from_contour", color = "red")
def create_NFD_from_contour(self, x_vals, y_vals):
'''
This function takes a series of [x,y] values and converts them into a single FFT representation
'''
n = lambda a: int(np.where(self.index_vect == a)[0][0])
A = lambda a: int(self.index_vect[a])
# store the number of samples locally for easier typing
nsamp = self.nsamp
max_norms = 0
# a list of the possible normalization coefficients that might be used
possible_k_values = np.array([2,-1,-2,-3,-4])
# initialize the different values that we are going to fill in as we calculate and normalize
NFD = np.zeros([possible_k_values.shape[0], nsamp], dtype = 'c16')
angle = np.zeros([possible_k_values.shape[0]])
# take the FFT of the input contour
# We subtract v_vals from imsize because we are correcting for the element locations of a pixel in an image
# this creates a 1D complex array using x and y values
#TODO: can this be run in parallel
#TODO: see if this runs in normal python
with nvtx.annotate("fft call", color="blue"): # running in normal python?
fcoord = np.fft.fft(
(x_vals + (self.imsize - y_vals)*1j),
nsamp
)
# We shift the fft
# (-N/2) + 1 <= i <= (N/2)
fcoord = self.shift(fcoord)
# pull out the centroid, which is the A(0) value
# set this to zero to normalize the fft
centroid = fcoord[n(0)]
fcoord[n(0)] = 0
# Now we want to find the value of A(1), which is the magnitude of the contour
magnitude = abs(fcoord[n(1)])
# then we normalize each of the values by the magnitude A(i) / A(1)
fcoord = fcoord / magnitude
self.testing_fcoord = fcoord[:]
# Now, we want to find the value of k, where A(k) is the second largest magnitude in the fft
idx = np.argsort(abs(fcoord))
idx = idx[::-1] # reverse the order
k_index = idx[1] # second largest value
k_freq = A(idx[1]) # which frequency value is this index associated with
# now determine the number of normalizations
m_k = abs(k_freq - 1)
if m_k == 0:
raise Exception("No valid normalizations!")
for norm_num, k in enumerate(possible_k_values):
# u = phase of A(1)
u = np.arctan2(
fcoord.imag[n(1)],
fcoord.real[n(1)]
)
# v = phase of A(k)
v = np.arctan2(
fcoord.imag[n(k)],
fcoord.real[n(k)]
)
# Calculate the specific angle instance of the rotation
angle[norm_num] = ((v - k*u)/(k-1))*(180./np.pi)
# calculate the rotation and shift starting point normalization for the contour
ang = [((x - k)*u + (1 - x)*v)/(k-1) for x in np.linspace(-self.nsamp/2 + 1, self.nsamp / 2, self.nsamp)]
coeff = [np.exp(1j*x) for x in ang]
NFD[norm_num,:] = fcoord*coeff
return centroid, magnitude, angle, NFD, m_k
@nvtx.annotate("shift", color = "blue") # i dont think this one is taking long at all, just going to toss it here in case
def shift(self,nfd):
'''
This replaces the np.fft.fftshift due to issues with the shifting parameters
'''
shift_amount = [((dim // 2) - 1) for dim in nfd.shape ]
return np.roll(nfd, shift_amount)
@nvtx.annotate("ishift", color = "blue")
def ishift(self,nfd):
'''
This replaces np.fft.ifftshift based on our needs (off-by-one)
'''
shift_amount = [(-dim //2 + 1 ) for dim in nfd.shape]
return np.roll(nfd, shift_amount)
@nvtx.annotate("create_nfd_library", color = "green")
def create_nfd_library(self, STLFile):
'''
This function creates an NFD library based on the STL and rotation indices that have been specified
'''
# define our rotation parameters
xrot = np.linspace(int(-1*self.xrotmax),
int(self.xrotmax),
int((2*self.xrotmax/self.xrotinc))+1)
yrot = np.linspace(int(-1*self.yrotmax),
int(self.yrotmax),
int((2*self.yrotmax/self.yrotinc))+1)
# create all the different values that we are going to fill up
rot_indices = np.empty([xrot.size, yrot.size, 2])
NFD_library = np.zeros([xrot.size, yrot.size, self.max_num_norms,self.nsamp], dtype = 'c16')
angle_library = np.zeros([xrot.size, yrot.size, self.max_num_norms])
magnitude_library = np.zeros([xrot.size, yrot.size])
centroid_library = np.zeros([xrot.size, yrot.size], dtype='c16')
renWin, renderer, transformFilter, stl_mapper = self.set_visualization_scene(STLFile)
for j, xr in enumerate(xrot):
for k, yr in enumerate(yrot):
rot_indices[j,k,0] = xr
rot_indices[j,k,1] = yr
# Should these get wrapped in the profiler also?
# Does the time from the initial profiler add the time from each of these calls as well? Is it nested?
xval, yval = self.create_projection(STLFile, renWin, renderer, transformFilter, stl_mapper, xr, yr, 0)
cent,mag,ang,nfd,mk = self.create_NFD_from_contour(xval,yval)
centroid_library[j,k] = cent
magnitude_library[j,k] = mag
angle_library[j,k,:] = ang
NFD_library[j,k,:,:] = nfd
self.rot_indices = rot_indices
self.centroid_library = centroid_library
self.magnitude_library = magnitude_library
self.angle_library = angle_library
self.NFD_library = NFD_library
# probably not going to be running this because the data is a bit too hefty to add to the hipergator system.
@nvtx.annotate("estimate_pose", color = "orange")
def estimate_pose(self,instance):
'''
Given an input NFD instance, this will determine the pose
'''
xspan = self.NFD_library.shape[0]
yspan = self.NFD_library.shape[1]
dist = np.empty([xspan, yspan])
# We have to divide by the nsamp because of the normalization method used in the FFT
centroid_library = self.centroid_library / self.nsamp
centroid_instance = instance["centroid"] / self.nsamp
mag_library = self.magnitude_library / self.nsamp
mag_instance = instance["magnitude"] / self.nsamp
for i in range(0,xspan):
for j in range(0,yspan):
diff = sum([x.real**2 + x.imag**2 for x in (instance["NFD"][1] - self.NFD_library[i,j,1,:])])
dist[i,j] = diff
idx,idy = np.where(dist == dist.min())
#print(idx,idy)
x_rot_est = self.rot_indices[idx,idy,0]
y_rot_est = self.rot_indices[idx,idy,1]
z_rot_est = (self.angle_library[idx,idy,1] - instance["angle"][1])
z_rot_rad = z_rot_est * np.pi / 180
z_rot_rad = z_rot_rad
if z_rot_est[0] > 360:
z_rot_est[0] -= 360
if z_rot_est[0] < -360:
z_rot_est[0] += 360
z_lib = 0.1*self.pd
z_est = self.pd - (self.pd - z_lib)*(mag_library[idx,idy] / mag_instance)
x_offset = (0.5 * self.imsize) #+ (self.xo/self.sc)
y_offset = (0.5 * self.imsize) #+ (self.yo/self.sc)
# Calculate the zoom based on similar triangles
zoom = (self.pd - z_lib)/(self.pd - z_est)
x_lib = (centroid_library[idx,idy].real - x_offset)/zoom
y_lib = (centroid_library[idx,idy].imag - y_offset)/zoom
# Now, calculate the location of the estimated x and y translation based on centroid and roatation
rot = np.array([[math.cos(z_rot_rad),-math.sin(z_rot_rad)],
[math.sin(z_rot_rad), math.cos(z_rot_rad)]])
x_inst = centroid_instance.real - x_offset
y_inst = centroid_instance.imag - y_offset
t_inst = np.array([[x_inst],[y_inst]])
t_lib = np.array([[x_lib[0]],[y_lib[0]]])
t_est_px = t_inst - np.matmul(rot,t_lib)
t_est_len = t_est_px * self.sc
x_est, y_est = t_est_len
# x_est = x_inst - (math.cos(z_rot_rad)*x_lib - math.sin(z_rot_rad)*y_lib)
#y_est = y_inst - (math.sin(z_rot_rad)*x_lib + math.cos(z_rot_rad)*y_lib)
# Fix the units based on the location of the focal angle. Move z_est based on camera
z_est_corr = z_est - self.pd
if abs(z_est_corr) > abs(self.pd):
z_est_corr[0] = - self.pd
x_est = x_est * (z_est_corr / -self.pd) + self.xo
y_est = y_est * (z_est_corr / -self.pd) + self.yo
# Fix the rotations based on the projective geometry
phi_x = np.arctan2(y_est, (self.pd - z_est))
phi_y = np.arctan2(x_est, (self.pd - z_est))
#x_rot_corr = x_rot_est + (np.cos(z_rot_rad)*phi_x - np.sin(z_rot_rad)*phi_y) * 180/np.pi
#y_rot_corr = y_rot_est - (np.sin(z_rot_rad)*phi_x - np.cos(z_rot_rad)*phi_y)*180/np.pi
rot_corr = np.array([
[-np.cos(z_rot_rad), np.sin(z_rot_rad)],
[np.sin(z_rot_rad), np.cos(z_rot_rad)]
])
rotation_correction = np.matmul(rot_corr, np.array([[phi_x],[phi_y]]))
x_rot_corr = x_rot_est - rotation_correction[0] * 180/np.pi
y_rot_corr = y_rot_est - rotation_correction[1] * 180/np.pi
vector1 = np.array([
(x_lib[0])*self.sc,
(y_lib[0])*self.sc,
-0.9*self.pd
])
vector2 = np.array([
x_est[0],
y_est[0],
z_est_corr[0]
])
rot_corr = two_vector_rotation_matrix(vector1, vector2)
# Create rotation matrix based on the rotations at 0,0,0
rot_at_origin = create_rotation_matrix_312(z_rot_est[0], x_rot_est[0], y_rot_est[0])
# now, we apply the rotation from the value at the origin
new_rot = np.matmul(rot_at_origin,rot_corr)
# extract the rotations
zr, xr, yr = getRotations("312",new_rot)
return x_est[0], y_est[0], z_est_corr[0], zr, xr, yr
@nvtx.annotate("save_nfd_library", color = "red")
def save_nfd_library(self,filename):
"""
Saves the necessary library variables into a dict for easier access after unpickling.
If any data does not exist, pickling and saving is skipped, and the user is informed.
Otherwise, the data is saved to a file 'filename'.nfd
"""
try:
self.nfd_dict = {"NFD_library":self.NFD_library, "angle_library": self.angle_library,
"mag_library": self.magnitude_library, "centroid_library": self.centroid_library,
"rot_indices": self.rot_indices}
filename = filename + '.nfd'
output = open(filename, 'wb')
pickle.dump(self.nfd_dict, output)
pickle.dump(self.params, output)
output.close()
except AttributeError as error:
print("Error!", error, "\nAll library objects must be instantiated before trying to save!")
def load_nfd_library(self, pickle_path):
"""
Loads a pickle from a passed-in file path.
Once the pickle is loaded, saves its params to self variables in order to allow easier access of needed data.
"""
try:
FFTFile = open(pickle_path, 'rb')
self.FFTPickle = pickle.load(FFTFile)
self.NFD_library = self.FFTPickle['NFD_library']
self.angle_library = self.FFTPickle['angle_library']
self.magnitude_library = self.FFTPickle['mag_library']
self.centroid_library = self.FFTPickle['centroid_library']
self.rot_indices = self.FFTPickle['rot_indices']
FFTFile.close()
except FileNotFoundError:
print("Error! The file you are trying to load either does not exist, or does not exist at this location: ", pickle_path)
@nvtx.annotate("extract_contour_from_image", color = "green")
def extract_contour_from_image(self, image):
'''
Extract the contour from a loaded image
'''
if not os.path.exists(image):
raise Exception("Image does not exist at path: ", image)
try:
img = cv2.imread(image, cv2.IMREAD_GRAYSCALE)
except:
print("Could not load image")
# apply a contour detector on the image
kernel = np.ones([5,5], np.uint8)
binary = cv2.dilate(img, kernel, iterations = 1)
binary = cv2.erode(binary, kernel, iterations = 1)
contours, hierarchy = cv2.findContours(
binary,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE
)
done = 0
for contour in contours:
x,y = contour.T
x = x.tolist()[0]
y = y.tolist()[0]
if len(x) >200:
# Resample contour in nsamp equispaced increments using spline interpolation
# https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.splprep.html
tck, u = splprep([x,y], u=None, s=1.0, per=1)
# https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linspace.html
u_new = np.linspace(u.min(), u.max(), self.nsamp)
#u_new = np.linspace(u.min(), u.max(), 64)
# https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.splev.html
x_new, y_new = splev(u_new, tck, der=0)
# Convert it back to numpy format for opencv to be able to display it
#plt.plot(x_new,self.imsize-y_new)
#plt.show()
# commented out the line above to skip display window opening.
done = 1
if done:
break
return x_new, y_new
@nvtx.annotate("set_visualization_scene", color = "blue")
def set_visualization_scene(self, STLFile):
plt.clf()
self.STLFile = STLFile
isc = 1/self.sc # inverse scale [px/mm]
fx = self.pd/self.sc # scale pd into pixel units
fy = fx # same pd in x and y
cx = self.imsize/2 # project to image center
cy = cx # same x and y image center
w = self.imsize # assume square image
h = self.imsize # assume square image
# STL Render Setup
renderer = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.SetOffScreenRendering(1)
# Set up basic camera parameters in VTK and clipping planes
cam = renderer.GetActiveCamera()
near = 0.1
far = 1.5*fx
cam.SetClippingRange(near, far)
# Position is at origin, looking in -z direction, y is up
cam.SetPosition(0, 0, 0)
cam.SetFocalPoint(0, 0, -1)
cam.SetViewUp(0, 1, 0)
cam.SetWindowCenter(0, 0)
# Set vertical view angle as an indirect way of
# setting the y focal distance
angle = (180 / np.pi) * 2.0 * np.arctan2(self.imsize/2, fy)
cam.SetViewAngle(angle)
# Set vertical view angle as an indirect way of
# setting the x focal distance
m = np.eye(4)
aspect = fy/fx
m[0,0] = 1.0/aspect
t = vtk.vtkTransform()
t.SetMatrix(m.flatten())
cam.SetUserTransform(t)
# Set up vtk rendering again to make it stick
# TODO: figure out why this doesn't work
renderer = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.SetOffScreenRendering(1)
# Set basic camera parameters in VTK
# TODO: figure out why this needs to be placed in the code again
cam = renderer.GetActiveCamera()
cam.SetClippingRange(near, far)
cam.SetPosition(0, 0, 0)
cam.SetFocalPoint(0, 0, -1)
cam.SetViewUp(0, 1, 0)
cam.SetWindowCenter(0,0)
cam.SetViewAngle(angle)
cam.SetUserTransform(t)
# Load in 3D model using VTK
stl_reader = vtk.vtkSTLReader()
stl_reader.SetFileName(self.STLFile)
# Initialize VTK Transform Filter and mapper
transformFilter = vtk.vtkTransformPolyDataFilter()
transformFilter.SetInputConnection(stl_reader.GetOutputPort())
stl_mapper = vtk.vtkPolyDataMapper()
stl_mapper.SetInputConnection(transformFilter.GetOutputPort())
return renWin, renderer, transformFilter, stl_mapper
@nvtx.annotate("create_single_projection", color = "purple")
def create_single_projection(self,STLFile, xr,yr,zr, translate = None):
renWin, renderer, transformFilter, stl_mapper = self.set_visualization_scene(STLFile)
return self.create_projection(STLFile, renWin, renderer, transformFilter, stl_mapper, xr, yr, zr, translate)
@nvtx.annotate("create_single_instance", color = "orange")
def create_single_instance(self, STLFile, xr, yr, zr, translate = None):
x, y = self.create_single_projection(STLFile, xr, yr, zr, translate)
centroid, magnitude, angle, NFD, m_k = self.create_NFD_from_contour(x,y)
instance = {
"centroid" : centroid,
"magnitude" : magnitude,
"angle" : angle,
"NFD" : NFD,
"m" : m_k
}
return instance
# TODO: make some of the different colors for better visualization
@nvtx.annotate("pose_from_segmentation", color = "purple")
def pose_from_segmentation(self,image):
'''
This will take in the path to an image and return the pose at that specific value
'''
x, y = self.extract_contour_from_image(image)
centroid, magnitude, angle, NFD, m_k = self.create_NFD_from_contour(x,y)
img_inst = {
"centroid" : centroid,
"magnitude" : magnitude,
"angle" : angle,
"NFD" : NFD
}
return self.estimate_pose_better(img_inst)
## TODO: add a function that will plot the library for anyone that wants a nice visualization tool
def estimate_pose_better(self,inst):
'''
Rewriting the estimate_pose library in a way that is more intuitive
'''
xspan = self.NFD_library.shape[0]
yspan = self.NFD_library.shape[1]
dist = np.empty([xspan, yspan, 5])
# First, we want to grab the magnitude of the current library and
# normalize for all the different values
# Find the location in the NFD library that is closest to the input
for i in range(0,xspan):
for j in range(0, yspan):
for norm in range(0,5):
diff = sum([x.real**2 + x.imag**2 for x in (inst["NFD"][norm] - self.NFD_library[i,j,norm,:])])
dist[i,j,norm] = diff
# Now, we know the rotation indices for the value at the given location
# take the smallest distance
idx,idy, norm_idx = np.where(dist == dist.min())
#print(self.rot_indices[idx,idy])
#print(self.rot_indices[idx,idy].shape)
# This gives us values for all the different library indices
# Pull out the magnitude of the instance and the matching library value
mag_inst = inst["magnitude"]
mag_lib = self.magnitude_library[idx,idy]
# determine the z translation
# define z_lib translation
z_lib = 0.1 * self.pd
z_est = self.pd - (self.pd - z_lib)*(mag_lib/mag_inst) # this inherits units from self.pd
# FINAL VALUE THAT GETS RETURNED
z_final = z_est[0] - self.pd
if abs(z_final) > abs(self.pd):
z_final = -self.pd # this makes sure that the value is not beyond the image plane
# Now we determine the rotations based on the caluculated values from the library and instance
x_rot_est = self.rot_indices[idx,idy,0][0]
y_rot_est = self.rot_indices[idx,idy,1][0]
#print(x_rot_est, idx, "\n", y_rot_est, idy)
z_rot_est = (self.angle_library[idx,idy,norm_idx] - inst["angle"][norm_idx])[0]
z_rot_rad = z_rot_est * np.pi / 180
# Now we determine the x,y translations
# start with the two centroid values
cent_inst = inst["centroid"]
cent_lib = self.centroid_library[idx,idy]
x_in = (cent_inst.real / self.nsamp) - 512 # correcting for FFT normalization and setting center of image as origin
y_in = (cent_inst.imag / self.nsamp) - 512
#print("Centroid_in ",x_in, y_in)
x_lib = (cent_lib.real / self.nsamp) - 512
y_lib = (cent_lib.imag / self.nsamp) - 512
#print("Centroid_lib: ", x_lib, y_lib)
cz = np.cos(z_rot_rad)
sz = np.sin(z_rot_rad)
centroid_zoom = (self.pd - z_lib)/(self.pd - z_est)
#print("zoom factoprs: ",centroid_zoom, (inst["magnitude"]/self.magnitude_library[idx,idy]))
x_est_px = x_in - (cz*x_lib - sz*y_lib)*(centroid_zoom)
y_est_px = y_in - (sz*x_lib + cz*y_lib)*(centroid_zoom)
# convert to mm
x_est_mm = x_est_px * self.sc
y_est_mm = y_est_px * self.sc
#print(x_est_mm, y_est_mm)
# adjust for projection
x_final = x_est_mm * ((self.pd - z_est)/self.pd)# - self.xo # might need to change caliblration offset to a plus/minus
y_final = y_est_mm * ((self.pd - z_est)/self.pd)# - self.yo
#print(x_final, y_final, ((self.pd - z_est)/self.pd))
# now to adjust for rotation estimates based on the perspective shift
# going to correct by making an axis-angle representation
v1 = np.array([
0,
0,
self.pd - z_est[0]
])
v2 = np.array([
x_final[0],
y_final[0],
self.pd - z_est[0]
])
rot_adjusting = two_vector_rotation_matrix(v1,v2)
#rot_adjusting = np.linalg.inv(rot_adjusting_temp)
rot_at_center = create_rotation_matrix_312(z_rot_est,x_rot_est,y_rot_est)
# perform a rotation based on the global axes defined in rot_adjusting
final_rot = np.matmul(rot_adjusting, rot_at_center) # might need to tinker with the negative values in here to get it to work better
z_rot, x_rot_final, y_rot_final = getRotations("312",final_rot)
phi_x = np.arctan2(y_final, abs(z_final))
phi_y = np.arctan2(x_final, abs(z_final))
#x_rot_final = (x_rot_est + np.rad2deg((-cz*phi_x + sz*phi_y)))[0]
#y_rot_final = (y_rot_est + np.rad2deg((sz*phi_x + cz*phi_y)))[0]
if z_rot_est < -180:
z_rot_final = 360 + z_rot_est
elif z_rot_est > 180:
z_rot_final = z_rot_est - 360
else:
z_rot_final = z_rot_est
# need to make sure that each of the values get stored correctly
try:
x_final = x_final[0]
except:
pass
try:
y_final = y_final[0]
except:
pass
try:
z_final = z_final[0]
except:
pass
return x_final, y_final, z_final, z_rot_final, x_rot_final, y_rot_final
def print_library(self, norm_coeff, clock_arm_length, scale):
"""
This will print the fourier library for visualization purposes
"""
fig,ax = plt.subplots(figsize = (13,13))
idx,jdx, _ = self.rot_indices.shape
norm = norm_coeff
for i in range(0,idx):
for j in range(0,jdx):
inv = self.ishift(self.NFD_library[i,j][norm])
inv = np.fft.ifft(inv)
angle = self.angle_library[i,j][norm] * np.pi / 180
x_cent = self.rot_indices[i,j][0]
y_cent = self.rot_indices[i,j][1]
clock_x = [x_cent,x_cent + np.cos(angle)*clock_arm_length ]
clock_y = [y_cent, y_cent + np.sin(angle)*clock_arm_length]
x = inv.real*scale + x_cent
y = inv.imag*scale + y_cent
#ax.plot(x,y, linewidth = 4)
ax.fill(x,y)
#ax.plot(clock_x, clock_y, linewidth = 2, color = 'black')
#ax.plot(x_cent, y_cent, marker = "x", color = "black", markersize = 10)
ax.set_xlabel("Implant X-rotation (°)", size = 35)
plt.xticks(fontsize = 25)
ax.set_ylabel("Implant Y-rotation (°)", size = 35)
plt.yticks(fontsize = 25)
plt.show()
def print_instance(self, instance, norm_coeff, clock_arm_length, scale):
fig, ax = plt.subplots(figsize = (13,13))
norm = norm_coeff
inv = self.ishift(instance["NFD"][norm])
inv = np.fft.ifft(inv)
angle = instance["angle"][norm] * np.pi / 180
x_cent = 0
y_cent = 0
clock_x = [x_cent,x_cent + np.cos(angle)*clock_arm_length ]
clock_y = [y_cent, y_cent + np.sin(angle)*clock_arm_length]
x = inv.real*scale + x_cent
y = inv.imag*scale + y_cent
ax.plot(x,y, linewidth = 4)
ax.plot(clock_x, clock_y, linewidth = 2, color = 'black')
ax.plot(x_cent, y_cent, marker = "x", color = "black", markersize = 10)
ax.set_xlabel("X-rotation", size = 35)
plt.xticks(fontsize = 25)
ax.set_ylabel("Y-rotation", size = 35)
plt.yticks(fontsize = 25)
def bspline(self,cv, n=128, degree=3, periodic=False):
""" Calculate n samples on a bspline
cv : Array ov control vertices
n : Number of samples to return
degree: Curve degree
periodic: True - Curve is closed
False - Curve is open
"""
# If periodic, extend the point array by count+degree+1
cv = np.asarray(cv)
count = len(cv)
if periodic:
factor, fraction = divmod(count+degree+1, count)
cv = np.concatenate((cv,) * factor + (cv[:fraction],))
count = len(cv)
degree = np.clip(degree,1,degree)
# If opened, prevent degree from exceeding count-1
else:
degree = np.clip(degree,1,count-1)
# Calculate knot vector
kv = None
if periodic:
kv = np.arange(0-degree,count+degree+degree-1)
else:
kv = np.clip(np.arange(count+degree+1)-degree,0,count-degree)
# Calculate query range
u = np.linspace(periodic,(count-degree),n)
# Calculate result
return np.array(si.splev(u, (kv,cv.T,degree))).T