Going deeper with Image Transformers, arxiv
PaddlePaddle training/validation code and pretrained models for CaiT.
The official pytorch implementation is here.
This implementation is developed by PaddleViT.
- Update (2022-07-12): Model weights trained from scratch using PaddleViT is updated.
- Update (2022-03-17): Code is refactored and bugs are fixed.
- Update (2021-09-27): More weights are uploaded.
- Update (2021-08-11): Code is released and ported weights are uploaded.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link |
---|---|---|---|---|---|---|---|---|
cait_xxs24_224 | 78.38 | 94.32 | 11.9M | 2.2G | 224 | 1.0 | bicubic | google/baidu |
cait_xxs36_224 | 79.75 | 94.88 | 17.2M | 33.1G | 224 | 1.0 | bicubic | google/baidu |
cait_xxs24_384 | 80.97 | 95.64 | 11.9M | 6.8G | 384 | 1.0 | bicubic | google/baidu |
cait_xxs36_384 | 82.20 | 96.15 | 17.2M | 10.1G | 384 | 1.0 | bicubic | google/baidu |
cait_s24_224 | 83.45 | 96.57 | 46.8M | 8.7G | 224 | 1.0 | bicubic | google/baidu |
cait_xs24_384 | 84.06 | 96.89 | 26.5M | 15.1G | 384 | 1.0 | bicubic | google/baidu |
cait_s24_384 | 85.05 | 97.34 | 46.8M | 26.5G | 384 | 1.0 | bicubic | google/baidu |
cait_s36_384 | 85.45 | 97.48 | 68.1M | 39.5G | 384 | 1.0 | bicubic | google/baidu |
cait_m36_384 | 86.06 | 97.73 | 270.7M | 156.2G | 384 | 1.0 | bicubic | google/baidu |
cait_m48_448 | 86.49 | 97.75 | 355.8M | 287.3G | 448 | 1.0 | bicubic | google/baidu |
*The results are evaluated on ImageNet2012 validation set.
Model | Acc@1 | Acc@5 | #Params | FLOPs | Image Size | Crop_pct | Interpolation | Link | Log |
---|---|---|---|---|---|---|---|---|---|
cait_xxs24_224 | 78.24 | 96.26 | 11.9M | 2.2G | 224 | 1.0 | bicubic | google/baidu | google/baidu |
ImageNet2012 dataset is used in the following file structure:
│imagenet/
├──train_list.txt
├──val_list.txt
├──train/
│ ├── n01440764
│ │ ├── n01440764_10026.JPEG
│ │ ├── n01440764_10027.JPEG
│ │ ├── ......
│ ├── ......
├──val/
│ ├── n01440764
│ │ ├── ILSVRC2012_val_00000293.JPEG
│ │ ├── ILSVRC2012_val_00002138.JPEG
│ │ ├── ......
│ ├── ......
train_list.txt
: list of relative paths and labels of training images. You can download it from: google/baiduval_list.txt
: list of relative paths and labels of validation images. You can download it from: google/baidu
To use the model with pretrained weights, download the .pdparam
weight file and change related file paths in the following python scripts. The model config files are located in ./configs/
.
For example, assume weight file is downloaded in ./cait_xxs24_224.pdparams
, to use the cait_xxs24_224
model in python:
from config import get_config
from cait import build_cait as build_model
# config files in ./configs/
config = get_config('./configs/cait_xxs24_224.yaml')
# build model
model = build_model(config)
# load pretrained weights
model_state_dict = paddle.load('./cait_xxs24_224.pdparams')
model.set_state_dict(model_state_dict)
To evaluate CaiT model performance on ImageNet2012, run the following script using command line:
sh run_eval_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cait_xxs24_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-eval \
-pretrained='./cait_xxs24_224.pdparams' \
-amp
Note: if you have only 1 GPU, change device number to
CUDA_VISIBLE_DEVICES=0
would run the evaluation on single GPU.
To train the CaiT model on ImageNet2012, run the following script using command line:
sh run_train_multi.sh
or
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cait_xxs24_224.yaml' \
-dataset='imagenet2012' \
-batch_size=256 \
-data_path='/dataset/imagenet' \
-amp
Note: it is highly recommanded to run the training using multiple GPUs / multi-node GPUs.
To finetune the CaiT model on ImageNet2012, run the following script using command line:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
python main_multi_gpu.py \
-cfg='./configs/cait_xxs24_384.yaml' \
-dataset='imagenet2012' \
-batch_size=16 \
-data_path='/dataset/imagenet' \
-pretrained='./cait_xxs24_224.pdparams' \
-amp
Note: use
-pretrained
argument to set the pretrained model path, you may also need to modify the hyperparams defined in config file.
@InProceedings{Touvron_2021_ICCV,
author = {Touvron, Hugo and Cord, Matthieu and Sablayrolles, Alexandre and Synnaeve, Gabriel and J\'egou, Herv\'e},
title = {Going Deeper With Image Transformers},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2021},
pages = {32-42}
}