From e9c1cd4fab48d1d09e8696a38616c9e550adc5ac Mon Sep 17 00:00:00 2001 From: Jee Jee Li Date: Thu, 26 Dec 2024 15:52:48 +0800 Subject: [PATCH] [Misc][LoRA] Fix LoRA weight mapper (#11495) Signed-off-by: Jee Jee Li --- tests/lora/test_lora_checkpoints.py | 15 ++++++++----- tests/lora/test_qwen2vl.py | 6 ++++- vllm/lora/models.py | 3 ++- vllm/lora/utils.py | 34 ++++++++++------------------- vllm/lora/worker_manager.py | 2 ++ 5 files changed, 31 insertions(+), 29 deletions(-) diff --git a/tests/lora/test_lora_checkpoints.py b/tests/lora/test_lora_checkpoints.py index 9842203eb15e0..537d95b025a9d 100644 --- a/tests/lora/test_lora_checkpoints.py +++ b/tests/lora/test_lora_checkpoints.py @@ -74,7 +74,7 @@ def test_load_checkpoints( embedding_padding_modules=embed_padding_modules) -def test_lora_weights_mapping(baichuan_lora_files, ): +def test_lora_weights_mapping(baichuan_lora_files): supported_lora_modules = BaiChuanBaseForCausalLM.supported_lora_modules packed_modules_mapping = BaiChuanBaseForCausalLM.packed_modules_mapping embedding_modules = BaiChuanBaseForCausalLM.embedding_modules @@ -86,10 +86,14 @@ def test_lora_weights_mapping(baichuan_lora_files, ): else: expected_lora_modules.append(module) - hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={ - "model.": "language_model.model.", - }, ) - + hf_to_vllm_mapper = WeightsMapper( + orig_to_new_prefix={ + "model.": "language_model.model.", + }, + orig_to_new_substr={ + ".layers.": ".baichuan_layers.", + }, + ) lora_model = LoRAModel.from_local_checkpoint( baichuan_lora_files, expected_lora_modules, @@ -101,3 +105,4 @@ def test_lora_weights_mapping(baichuan_lora_files, ): ) for name in lora_model.loras: assert name.startswith(hf_to_vllm_mapper.orig_to_new_prefix["model."]) + assert ".baichuan_layers." in name diff --git a/tests/lora/test_qwen2vl.py b/tests/lora/test_qwen2vl.py index c8c720ff0c776..c9f48402b0268 100644 --- a/tests/lora/test_qwen2vl.py +++ b/tests/lora/test_qwen2vl.py @@ -22,7 +22,7 @@ # After fine-tuning with LoRA, all generated content should start begin `A`. EXPECTED_OUTPUT = [ - "A stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501 + "A red stop sign stands prominently in the foreground, with a traditional Chinese gate and a black SUV in the background, illustrating a blend of modern and cultural elements.", # noqa: E501 "A majestic skyscraper stands tall, partially obscured by a vibrant canopy of cherry blossoms, against a clear blue sky.", # noqa: E501 ] @@ -76,3 +76,7 @@ def test_qwen2vl_lora(qwen2vl_lora_files): output1 = do_sample(llm, qwen2vl_lora_files, lora_id=1) for i in range(len(EXPECTED_OUTPUT)): assert EXPECTED_OUTPUT[i].startswith(output1[i]) + + output2 = do_sample(llm, qwen2vl_lora_files, lora_id=2) + for i in range(len(EXPECTED_OUTPUT)): + assert EXPECTED_OUTPUT[i].startswith(output2[i]) diff --git a/vllm/lora/models.py b/vllm/lora/models.py index f50db8e3b8e10..5c0e4e5cbc636 100644 --- a/vllm/lora/models.py +++ b/vllm/lora/models.py @@ -231,7 +231,8 @@ def from_local_checkpoint( with safetensors.safe_open(lora_tensor_path, framework="pt") as f: # type: ignore for lora_module in f.keys(): # noqa - module_name, _, _ = parse_fine_tuned_lora_name(lora_module) + module_name, _, _ = parse_fine_tuned_lora_name( + lora_module, weights_mapper) part_name = module_name.split(".")[-1] if part_name not in expected_lora_modules: unexpected_modules.append(module_name) diff --git a/vllm/lora/utils.py b/vllm/lora/utils.py index 3a84a6ae1c02a..d72b7638d84af 100644 --- a/vllm/lora/utils.py +++ b/vllm/lora/utils.py @@ -1,4 +1,3 @@ -import copy import os import re from typing import List, Optional, Set, Tuple, Type, Union @@ -32,7 +31,6 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead from vllm.model_executor.models.utils import WeightsMapper -from vllm.utils import print_warning_once logger = init_logger(__name__) @@ -112,36 +110,28 @@ def parse_fine_tuned_lora_name( is_bias whether the tensor is lora bias. """ - w_mapper = None - if weights_mapper: - w_mapper = copy.deepcopy(weights_mapper) - # TODO: Currently only supports mapping for prefix, mapping for - # substr and subfix will be supported in the future. - for attr, mapping in [ - ("orig_to_new_substr", w_mapper.orig_to_new_substr), - ("orig_to_new_suffix", w_mapper.orig_to_new_suffix), - ]: - if mapping: - print_warning_once( - f"vLLM currently does not support mapping of LoRA weights " - f"for {mapping}.") - setattr(w_mapper, attr, {}) - - mapper = (lambda name: w_mapper._map_name(name) - if w_mapper is not None else name) + # LoRA weight qualified name always starts with `base_model.model.`, + # so we remove the prefix `base_model.model.` to make the following + # mapping correctly. + if "base_model.model." in name: + name = name.replace("base_model.model.", "") + name = weights_mapper._map_name(name) if weights_mapper else name + # recover the prefix `base_model.model.` + name = "base_model.model." + name + parts = name.split(".") if parts[-1] == "weight" and (parts[-2] == "lora_A" or parts[-2] == "lora_B"): new_name = ".".join(parts[2:-2]) - return mapper(new_name), parts[-2] == "lora_A", False + return new_name, parts[-2] == "lora_A", False if parts[-1] == "lora_embedding_A" or parts[-1] == "lora_embedding_B": new_name = ".".join(parts[2:-1]) - return mapper(new_name), parts[-1] == "lora_embedding_A", False + return new_name, parts[-1] == "lora_embedding_A", False if parts[-1] == "bias": new_name = ".".join(parts[2:-2]) - return mapper(new_name), False, True + return new_name, False, True raise ValueError(f"{name} is unsupported LoRA weight") diff --git a/vllm/lora/worker_manager.py b/vllm/lora/worker_manager.py index ef8cc5886103e..10976fac23028 100644 --- a/vllm/lora/worker_manager.py +++ b/vllm/lora/worker_manager.py @@ -91,6 +91,8 @@ def _load_adapter(self, lora_request: LoRARequest) -> LoRAModel: packed_modules_mapping[module]) else: expected_lora_modules.append(module) + + expected_lora_modules = list(set(expected_lora_modules)) lora_path = get_adapter_absolute_path(lora_request.lora_path) # For some models like Qwen2VL, we need to use hf_to_vllm_mapper