-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
198 lines (156 loc) · 6.64 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import json
from collections import defaultdict
import numpy as np
from tqdm import tqdm
import os
# from stanza.nlp.corenlp import CoreNLPClient
client = None
# NOTE: fix inconsistencies in data label
fix = {'centre': 'center', 'areas': 'area', 'phone number': 'number'}
def annotate(sent):
global client
if client is None:
client = CoreNLPClient(default_annotators='ssplit,tokenize'.split(','))
words = []
for sent in client.annotate(sent).sentences:
for tok in sent:
words.append(tok.word)
return words
class Turn:
def __init__(self, turn_id, asr_transcripts, asr_scores, transcript, turn_label, belief_state, system_acts, system_transcript, num=None):
self.id = turn_id
self.asr_transcripts = asr_transcripts
self.asr_scores = asr_scores
self.transcript = transcript
self.turn_label = turn_label
self.belief_state = belief_state
self.system_acts = system_acts
self.system_transcript = system_transcript
self.num = num or {}
def to_dict(self):
return {'turn_id': self.id, 'asr_transcripts': self.asr_transcripts, 'asr_scores': self.asr_scores, 'transcript': self.transcript, 'turn_label': self.turn_label, 'belief_state': self.belief_state, 'system_acts': self.system_acts, 'system_transcript': self.system_transcript, 'num': self.num}
@classmethod
def from_dict(cls, d):
return cls(**d)
@classmethod
def annotate_raw(cls, raw):
system_acts = []
for a in raw['system_acts']:
if isinstance(a, list):
s, v = a
system_acts.append(['inform'] + s.split() + ['='] + v.split())
else:
system_acts.append(['request'] + a.split())
asr_transcripts = []
asr_scores = []
for asr in raw['asr']:
asr_transcripts.append(annotate(asr[0]))
asr_scores.append(float(asr[1]))
return cls(
turn_id=raw['turn_idx'],
asr_transcripts=asr_transcripts,
asr_scores=asr_scores,
transcript=annotate(raw['transcript']),
system_acts=system_acts,
turn_label=[[fix.get(s.strip(), s.strip()), fix.get(v.strip(), v.strip())] for s, v in raw['turn_label']],
belief_state=raw['belief_state'],
system_transcript=raw['system_transcript'],
)
def numericalize_(self, vocab):
self.num['asr_transcripts'] = [vocab.word2index(['<sos>'] + [w.lower() for w in a] + ['<eos>'], train=True) for a in self.asr_transcripts]
self.num['transcript'] = vocab.word2index(['<sos>'] + [w.lower() for w in self.transcript + ['<eos>']], train=True)
self.num['system_acts'] = [vocab.word2index(['<sos>'] + [w.lower() for w in a] + ['<eos>'], train=True) for a in self.system_acts + [['<sentinel>']]]
class Dialogue:
def __init__(self, dialogue_id, turns):
self.id = dialogue_id
self.turns = turns
def __len__(self):
return len(self.turns)
def to_dict(self):
return {'dialogue_id': self.id, 'turns': [t.to_dict() for t in self.turns]}
@classmethod
def from_dict(cls, d):
return cls(d['dialogue_id'], [Turn.from_dict(t) for t in d['turns']])
@classmethod
def annotate_raw(cls, raw):
return cls(raw['dialogue_idx'], [Turn.annotate_raw(t) for t in raw['dialogue']])
class Dataset:
def __init__(self, dialogues):
self.dialogues = dialogues
def __len__(self):
return len(self.dialogues)
def iter_turns(self):
for d in self.dialogues:
for t in d.turns:
yield t
def to_dict(self):
return {'dialogues': [d.to_dict() for d in self.dialogues]}
@classmethod
def from_dict(cls, d):
return cls([Dialogue.from_dict(dd) for dd in d['dialogues']])
@classmethod
def annotate_raw(cls, fname):
with open(fname) as f:
data = json.load(f)
return cls([Dialogue.annotate_raw(d) for d in tqdm(data)])
def numericalize_(self, vocab):
for t in self.iter_turns():
t.numericalize_(vocab)
def extract_ontology(self):
slots = set()
values = defaultdict(set)
for t in self.iter_turns():
for s, v in t.turn_label:
slots.add(s.lower())
values[s].add(v.lower())
return Ontology(sorted(list(slots)), {k: sorted(list(v)) for k, v in values.items()})
def batch(self, batch_size, shuffle=False):
dialogues = self.dialogues
if shuffle:
np.random.shuffle(dialogues)
for i in tqdm(range(0, len(dialogues), batch_size)):
yield dialogues[i:i+batch_size]
def evaluate_preds(self, preds):
joint_goal = []
fix = {'centre': 'center', 'areas': 'area', 'phone number': 'number'}
i = 0
for d in self.dialogues:
for k,t in enumerate(d.turns):
pred_recovered = set([(s, v) for s, v in preds[i] if s != 'request'])
gold_recovered = set()
for b in t.belief_state:
for s, v in b['slots']:
if b['act'] != 'request':
gold_recovered.add((fix.get(s.strip(), s.strip()), fix.get(v.strip(), v.strip())))
joint_goal.append(gold_recovered == pred_recovered)
i += 1
return {'joint_goal': np.mean(joint_goal)}
def record_preds(self, preds, to_file):
data = self.to_dict()
i = 0
for d in data['dialogues']:
for t in d['turns']:
t['pred'] = sorted(list(preds[i]))
i += 1
with open(to_file, 'wt') as f:
json.dump(data, f)
class Ontology:
def __init__(self, slots=None, values=None, num=None):
self.slots = slots or []
self.values = values or {}
self.num = num or {}
def __add__(self, another):
new_slots = sorted(list(set(self.slots + another.slots)))
new_values = {s: sorted(list(set(self.values.get(s, []) + another.values.get(s, [])))) for s in new_slots}
return Ontology(new_slots, new_values)
def __radd__(self, another):
return self if another == 0 else self.__add__(another)
def to_dict(self):
return {'slots': self.slots, 'values': self.values, 'num': self.num}
def numericalize_(self, vocab):
self.num = {}
for s, vs in self.values.items():
self.num[s] = [vocab.word2index(annotate('{} = {}'.format(s, v)) + ['<eos>'], train=True) for v in vs]
@classmethod
def from_dict(cls, d):
return cls(**d)