This repository has been archived by the owner on Apr 23, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
201 lines (162 loc) · 6.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
'''Train CIFAR10 with OneFlow.'''
import oneflow as flow
import oneflow.nn as nn
import oneflow.optim as optim
import oneflow.nn.functional as F
import oneflow.backends.cudnn as cudnn
import torch
import torchvision
import os
import argparse
from models import *
from utils import progress_bar
parser = argparse.ArgumentParser(description='OneFlow CIFAR10 Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true',
help='resume from checkpoint')
args = parser.parse_args()
device = 'cuda' if flow.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
# OneFlow DataReader
# import oneflow.utils.vision.transforms as transforms
# transform_train = transforms.Compose([
# transforms.RandomCrop(32, padding=4),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
# ])
# transform_test = transforms.Compose([
# transforms.ToTensor(),
# #transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
# ])
# trainset = flow.utils.vision.datasets.CIFAR10(
# root='./data', train=True, download=True, transform=transform_train)
# trainloader = flow.utils.data.DataLoader(
# trainset, batch_size=128, shuffle=True, num_workers=2)
# testset = flow.utils.vision.datasets.CIFAR10(
# root='./data', train=False, download=True, transform=transform_test)
# testloader = flow.utils.data.DataLoader(
# testset, batch_size=100, shuffle=False, num_workers=2)
# PyTorch DataReader
import torchvision.transforms as transforms
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2, drop_last=True)
testset = torchvision.datasets.CIFAR10(
root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(
testset, batch_size=100, shuffle=False, num_workers=2, drop_last=True)
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
# net = VGG('VGG16')
net = ResNet18()
# net = ResNet50()
# net = PreActResNet18()
# net = GoogLeNet()
# net = DenseNet121()
# net = ResNeXt29_2x64d()
# net = MobileNet()
# net = MobileNetV2()
# net = DPN92()
# net = ShuffleNetG2()
# net = SENet18()
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
# net = SimpleDLA()
net = net.to(device)
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = flow.load('./checkpoint')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
scheduler = flow.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
def calc_correct_num(preds, labels):
correct_of = 0.0
for pred, label in zip(preds, labels):
correct_of += (pred == label).sum()
return correct_of
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (torch_inputs, torch_targets) in enumerate(trainloader):
inputs = flow.tensor(torch_inputs.numpy(), requires_grad=False)
targets = flow.tensor(torch_targets.numpy(), requires_grad=False)
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
# _, predicted = outputs.max(1)
predicted = flow.argmax(outputs, 1).to(flow.int64)
total += targets.size(0)
correct += predicted.eq(targets).to(flow.int32).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
# with open('resnet18_cifar10_loss_fp32.txt', 'a') as f:
# f.write(str(train_loss) + '\n')
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
with flow.no_grad():
for batch_idx, (torch_inputs, torch_targets) in enumerate(testloader):
inputs = flow.tensor(torch_inputs.numpy())
targets = flow.tensor(torch_targets.numpy())
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
# _, predicted = outputs.max(1)
predicted = flow.argmax(outputs, 1).to(flow.int64)
total += targets.size(0)
correct += predicted.eq(targets).to(flow.int32).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
# state = {
# 'net': net.state_dict(),
# 'acc': acc,
# 'epoch': epoch,
# }
# if not os.path.isdir('checkpoint'):
# os.mkdir('checkpoint')
# flow.save(state, './checkpoint')
best_acc = acc
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()