Audio-WestlakeU
/
Microphone-Array-Generalization-for-Multichannel-Narrowband-Deep-Speech-Enhancement
Public
forked from RusselZHANG/Microphone-Array-Generalization-for-Multichannel-Narrowband-Deep-Speech-Enhancement
-
Notifications
You must be signed in to change notification settings - Fork 1
/
simulated_multichannel_speech_generator.m
173 lines (124 loc) · 6.04 KB
/
simulated_multichannel_speech_generator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
clc
clear
shuffle_enable = 1;
fs = 16000;
addpath D:\Audio\TIMIT_Dataset\tools\Wind-Generator-master
TIMIT_speaker_path = '../../../TIMIT_Dataset/Data/';
cough_path = 'coughs/';
speech_data = 1;
if speech_data ==1
clean_path = {[TIMIT_speaker_path 'train_val_clean/'],[TIMIT_speaker_path 'train_val_clean/'],[TIMIT_speaker_path 'test_cln/']};
else
clean_path = {[cough_path 'train_val_clean/'],[cough_path 'train_val_clean/'],[cough_path 'test_cln/']};
end
sets = {'tr','dt'};
for setindx = 1:length(sets)
set = sets{setindx};
clean = [clean_path{setindx} '*.wav'];
eval([set '_bth= dir(clean);']);
eval([ 'isolated_cln = ' set '_bth;'])
eval([set '_utt={};']);
for uind = 1:length(isolated_cln)
eval([set '_utt(end+1)= cellstr(' set '_bth(uind).name);'])
end
end
TRAINNSR = [-10,5]; % Train/validation snr range
simu_rir_path = 'simulated_RIR/';
outnames = {'train_mixed_wav','validation_mixed_wav'};
train_total_data_len = 10; % train data 10 hours
val_total_data_len = 3; % validation data 3 hours
total_durations = [train_total_data_len*60*60*16000 val_total_data_len*60*60*16000];
sample_len = 90*fs; % length of each long concatenated sequence
point_source_flag = 0;
% whether to cancel the echo and reverberation
direct_dur = 0.002*fs; % dp duration reverberation and echo cancellation
echoic_dur = 0.05*fs; % d50 duration reverberation cancellation
for i=1:2
set = sets{i};
accum_len = 1;
total_duration = total_durations(i);
outname = [sprintf('speech_dp_d50_reverb_simu_30h/') outnames{i}];
if ~exist(outname,'dir')
mkdir(outname);
end
eval(['clean_utt = ' set '_utt;']);
count = 0;
while accum_len < total_duration
rir_list = dir([simu_rir_path '*.mat']);
rir_name = rir_list(randperm(length(rir_list),1)).name;
load([simu_rir_path rir_name])
nchan = str2num(rir_name(1));
% initialization
utt_ind = randperm(length(clean_utt),1);
s = audioread([clean_path{i} clean_utt{utt_ind}]);
while length(s) < sample_len
utt_ind = randperm(length(clean_utt),1);
su = audioread([clean_path{i} clean_utt{utt_ind}]);
s = [s; su];
end
sdur = length(s);
recorded_speech = ones(sdur,nchan);
for ch = 1:nchan
recorded_speech(:,ch) = fftfilt(h(ch,:), s);
end
n_white = randn(sdur,nchan);
WHITENSR_dB = -20-5*rand;
whitensr = 10^(WHITENSR_dB/10);
n_white=sqrt(whitensr/sum(sum(n_white.^2))*sum(sum(recorded_speech.^2)))*n_white;
accum_len = accum_len + sdur;
[n, envir] = noise_generator(i,nchan, micro_pos, sdur);
if length(n)<sdur
padding = zeros(sdur-length(n),nchan);
n(length(n)+1:sdur,:) = padding;
end
if i <= 2 % training and validation data
nsrdb = rand(1)*(TRAINNSR(2)-TRAINNSR(1))+TRAINNSR(1);
% nsrdb = 0;
nsr = 10^(nsrdb/10);
n = sqrt(nsr/sum(sum(n.^2))*sum(sum(recorded_speech.^2)))*n;
if point_source_flag == 1
x = recorded_speech + n + n_point_ori + n_white;
real_snr = 10*log10(sum(sum(recorded_speech.^2))/sum(sum((n+n_point_ori).^2)));
else
x = recorded_speech + n + n_white;
real_snr = 10*log10(sum(sum(recorded_speech.^2))/sum(sum((n+n_white).^2)));
end
if shuffle_enable == 1
refind = randperm(size(x,2),1); % Refenrence channel randomly chosen
shuffled_4ch_mix_speech = zeros(size(x));
shuffled_4ch_mix_speech(:,1) = x(:,refind);
x(:,refind) = x(:,1);
C = x(:,2:end);
colrank = randperm(size(C,2));
shuffled_4ch_mix_speech(:,2:end) = C(:,colrank);
x(:,nchan+1) = recorded_speech(:,refind);
ref_h = h(refind,:);
[~,max_ind] = max(ref_h);
echoinic_speech = fftfilt(ref_h(1:max_ind+echoic_dur), s);
direct_speech = fftfilt(ref_h(1:max_ind+direct_dur), s);
x(:,nchan+2) = echoinic_speech;
x(:,nchan+3) = direct_speech;
if point_source_flag == 1
audiowrite([outname '/' rir_name(1:end-16) '_AC' num2str(ac_ind) '_' envir '_' num2str(real_snr) 'dB.wav'],x/max(max(abs(x))),fs);
else
audiowrite([outname '/' rir_name(1:end-16) '_' envir '_SNR_' num2str(real_snr) 'dB.wav'],x/max(max(abs(x))),fs);
end
else
x(:,end+1) = recorded_speech(:,refIndx);
audiowrite([outname '/' envir '_' num2str(real_snr) 'dB.wav'],x/max(max(abs(x))),fs);
% audiowrite([outname '/' int2str(count) '.wav'],x/max(max(abs(x))),fs);
end
else
nsrdb = 0;
nsr = 10^(nsrdb/10);
n=sqrt(nsr/sum(sum(n.^2))*sum(sum(recorded_speech.^2)))*n;
x=recorded_speech+n;
audiowrite([outname int2str(count) '_ms.wav'],x/max(max(abs(x))),fs);
audiowrite([outname int2str(count) '_noise.wav'],n/max(max(abs(n))),fs);
% audiowrite([udir oname(1:end-4) '_cln.wav'],s/max(max(abs(s))),fs);
% audiowrite([outname int2str(count) '_refms.wav'],x(:,refIndx)/max(abs(x(:,refIndx))),fs);
audiowrite([outname int2str(count) '_cln.wav'],recorded_speech(:,refIndx)/max(abs(recorded_speech(:,refIndx))),fs);
end
count = count+1;
end
end