-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathevaluation_matrix.py
executable file
·170 lines (136 loc) · 6.03 KB
/
evaluation_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import numpy as np
def mpjpe(predicted, target):
"""
Mean per-joint position error (i.e. mean Euclidean distance),
often referred to as "Protocol #1" in many papers.
"""
assert predicted.shape == target.shape
return torch.mean(torch.norm(predicted - target, dim=len(target.shape)-1))
def weighted_mpjpe(predicted, target, w):
"""
Weighted mean per-joint position error (i.e. mean Euclidean distance)
"""
assert predicted.shape == target.shape
assert w.shape[0] == predicted.shape[0]
return torch.mean(w * torch.norm(predicted - target, dim=len(target.shape)-1))
def p_mpjpe_torch(predicted, target, with_sRt=False,full_torch=False,with_aligned=False):
"""
Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
often referred to as "Protocol #2" in many papers.
"""
assert predicted.shape == target.shape
muX = torch.mean(target, dim=1, keepdim=True)
muY = torch.mean(predicted, dim=1, keepdim=True)
X0 = target - muX
Y0 = predicted - muY
X0[X0**2<1e-6]=1e-3
normX = torch.sqrt(torch.sum(X0**2, dim=(1, 2), keepdim=True))
normY = torch.sqrt(torch.sum(Y0**2, dim=(1, 2), keepdim=True))
normX[normX<1e-3]=1e-3
X0 /= normX
Y0 /= normY
H = torch.matmul(X0.transpose(1,2), Y0)
if full_torch:
U, s, V = batch_svd(H)
else:
U, s, Vt = np.linalg.svd(H.cpu().numpy())
V = torch.from_numpy(Vt.transpose(0, 2, 1)).cuda()
U = torch.from_numpy(U).cuda()
s = torch.from_numpy(s).cuda()
R = torch.matmul(V, U.transpose(2, 1))
# Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
sign_detR = torch.sign(torch.unsqueeze(torch.det(R[0]), 0))
V[:, :, -1] *= sign_detR.unsqueeze(0)
s[:, -1] *= sign_detR.flatten()
R = torch.matmul(V, U.transpose(2, 1)) # Rotation
tr = torch.unsqueeze(torch.sum(s, dim=1, keepdim=True), 2)
a = tr * normX / normY # Scale
t = muX - a*torch.matmul(muY, R) # Translation
if (a!=a).sum()>0:
print('NaN Error!!')
print('UsV:',U,s,V)
print('aRt:',a,R,t)
a[a!=a]=1.
R[R!=R]=0.
t[t!=t]=0.
# Perform rigid transformation on the input
predicted_aligned = a*torch.matmul(predicted, R) + t
if with_sRt:
return torch.sqrt(((predicted_aligned - target)**2).sum(-1)).mean(),(a,R,t)#torch.mean(torch.norm(predicted_aligned - target, dim=len(target.shape)-1))
if with_aligned:
return torch.sqrt(((predicted_aligned - target)**2).sum(-1)).mean(),predicted_aligned
# Return MPJPE
return torch.sqrt(((predicted_aligned - target)**2).sum(-1)).mean()#torch.mean(torch.norm(predicted_aligned - target, dim=len(target.shape)-1))#,(a,R,t),predicted_aligned
def batch_svd(H):
num = H.shape[0]
U_batch, s_batch, V_batch = [],[],[]
for i in range(num):
U, s, V = H[i].svd(some=False)
U_batch.append(U.unsqueeze(0))
s_batch.append(s.unsqueeze(0))
V_batch.append(V.unsqueeze(0))
return torch.cat(U_batch,0),torch.cat(s_batch,0),torch.cat(V_batch,0)
def p_mpjpe(predicted, target, with_sRt=False,full_torch=False,with_aligned=False,each_separate=False):
"""
Pose error: MPJPE after rigid alignment (scale, rotation, and translation),
often referred to as "Protocol #2" in many papers.
"""
assert predicted.shape == target.shape
muX = np.mean(target, axis=1, keepdims=True)
muY = np.mean(predicted, axis=1, keepdims=True)
X0 = target - muX
Y0 = predicted - muY
normX = np.sqrt(np.sum(X0**2, axis=(1, 2), keepdims=True))
normY = np.sqrt(np.sum(Y0**2, axis=(1, 2), keepdims=True))
X0 /= (normX+1e-6)
Y0 /= (normY+1e-6)
H = np.matmul(X0.transpose(0, 2, 1), Y0).astype(np.float16).astype(np.float64)
U, s, Vt = np.linalg.svd(H)
V = Vt.transpose(0, 2, 1)
R = np.matmul(V, U.transpose(0, 2, 1))
# Avoid improper rotations (reflections), i.e. rotations with det(R) = -1
sign_detR = np.sign(np.expand_dims(np.linalg.det(R), axis=1))
V[:, :, -1] *= sign_detR
s[:, -1] *= sign_detR.flatten()
R = np.matmul(V, U.transpose(0, 2, 1)) # Rotation
tr = np.expand_dims(np.sum(s, axis=1, keepdims=True), axis=2)
a = tr * normX / normY # Scale
t = muX - a*np.matmul(muY, R) # Translation
# Perform rigid transformation on the input
predicted_aligned = a*np.matmul(predicted, R) + t
if each_separate:
return np.linalg.norm(predicted_aligned - target, axis=len(target.shape)-1)
error = np.mean(np.linalg.norm(predicted_aligned - target, axis=len(target.shape)-1))
if with_sRt and not with_aligned:
return error, (a,R,t)
if with_aligned:
return error,(a,R,t),predicted_aligned
# Return MPJPE
return error
def n_mpjpe(predicted, target):
"""
Normalized MPJPE (scale only), adapted from:
https://github.com/hrhodin/UnsupervisedGeometryAwareRepresentationLearning/blob/master/losses/poses.py
"""
assert predicted.shape == target.shape
norm_predicted = torch.mean(torch.sum(predicted**2, dim=3, keepdim=True), dim=2, keepdim=True)
norm_target = torch.mean(torch.sum(target*predicted, dim=3, keepdim=True), dim=2, keepdim=True)
scale = norm_target / norm_predicted
return mpjpe(scale * predicted, target)
def mean_velocity_error(predicted, target):
"""
Mean per-joint velocity error (i.e. mean Euclidean distance of the 1st derivative)
"""
assert predicted.shape == target.shape
velocity_predicted = np.diff(predicted, axis=0)
velocity_target = np.diff(target, axis=0)
return np.mean(np.linalg.norm(velocity_predicted - velocity_target, axis=len(target.shape)-1))
def test():
r1 = np.random.rand(3,14,3)
r2 = np.random.rand(3,14,3)
pmpjpe = p_mpjpe(r1, r2,with_sRt=False)
pmpjpe_torch = p_mpjpe_torch(torch.from_numpy(r1), torch.from_numpy(r2),with_sRt=False,full_torch=True)
print('pmpjpe: {}; {:.6f}; {:.6f}; {:.6f}'.format(np.abs(pmpjpe-pmpjpe_torch.numpy())<0.01,pmpjpe,pmpjpe_torch.numpy(), pmpjpe-pmpjpe_torch.numpy()))
if __name__ == '__main__':
test()