forked from bedssys/Bedssys
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_pose.py
136 lines (109 loc) · 4.58 KB
/
image_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import logging
import time
import json
import imutils
import cv2
import numpy as np
from tf_pose.estimator import TfPoseEstimator
from tf_pose.networks import get_graph_path, model_wh
BLACK = [0, 0, 0]
# Square masking, to hide unwanted detection [(x0, y0), (x1, y1)]
DOMASK = True
MASK = [[(174, 0), (250, 80)],
[(320, 0), (380, 50)],
[(160, 140), (220, 206)],
[(180, 155), (240, 230)]]
# Cropping 2x2 video, -1 to disable
# CROP = 3
out_dir = "data/raw/"
output = "X_raw.txt"
def round_int(val):
return (round(val, 3))
def write_coco_json(human, image_w, image_h):
keypoints = []
coco_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
for coco_id in coco_ids:
if coco_id not in human.body_parts.keys():
keypoints.extend([0, 0])
continue
body_part = human.body_parts[coco_id]
keypoints.extend([round_int(body_part.x * image_w), round_int(body_part.y * image_h)])
return keypoints
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='tf-pose-estimation Video')
parser.add_argument('--image', type=str, default='')
parser.add_argument('--rotate', type=int, default=0) # Rotate CW
parser.add_argument('--resize', type=str, default='576x288', help='network input resolution. default=432x368')
parser.add_argument('--resize-out-ratio', type=float, default=4.0,
help='if provided, resize heatmaps before they are post-processed. default=1.0')
parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin')
parser.add_argument('--show-process', type=bool, default=False,
help='for debug purpose, if enabled, speed for inference is dropped.')
parser.add_argument('--showBG', type=bool, default=True, help='False to show skeleton only.')
parser.add_argument('--stats', type=bool, default=True, help='Display FPS, frame, etc.')
parser.add_argument('--crop', type=int, default=-1, help='Crop a 2x2 collage image, -1 to disable.')
args = parser.parse_args()
# # Frame management
# cap = cv2.VideoCapture()
# tot_frame = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# frame_skipped = 0
# frame = 0
i = 0
# Model initiation
w, h = model_wh(args.resize)
# File handling
crop = args.crop
out_file = out_dir + str(crop) + output
open(out_file, 'w').close() # Clear existing file
fp = open(out_file, 'a+') # Open in append mode
if w > 0 and h > 0:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
else:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368))
# Reads image
raw = cv2.imread(args.image)
# if cap.isOpened() is False:
# print("Error opening video stream or file")
while True:
# ret_val, raw = cap.read()
# raw = imutils.rotate_bound(raw, args.rotate)
h, w = raw.shape[:2]
# Cropping
if crop == -1:
image = raw
elif crop == 0:
image = raw[0:int(h/2), 0:int(w/2)] # Top-left
elif crop == 1:
image = raw[0:int(h/2), int(w/2):w] # Top-right
elif crop == 2:
image = raw[int(h/2):h, 0:int(w/2)] # Bot-left
elif crop == 3:
image = raw[int(h/2):h, int(w/2):w] # Bot-right
# Draw a mask around unwanted area
if DOMASK and crop != -1:
cv2.rectangle(image, MASK[crop][0], MASK[crop][1], BLACK, thickness=cv2.FILLED)
humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio)
image = TfPoseEstimator.draw_humans(image, humans, imgcopy=True) # Copy the image rather than stacking one on top of another
cv2.imshow('tf-pose-estimation result', image)
cv2.imwrite( 'posedata/' +'.png',image)
i = i + 1
fps_time = time.time()
# Printing json
image_h, image_w = image.shape[:2]
count = 0
item = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for human in humans:
if (count == 0):
item = write_coco_json(human,image_w,image_h)
count = count + 1
# json.dump(result, fp)
# json.dump(result, fp)# slice off first and last character
str_q = str(item)[1 : -1]
# print(str_q)
fp.write(str_q)
fp.write('\n')
if cv2.waitKey(1) == 27:
break
cv2.destroyAllWindows()
fp.close()