-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathGenNet.py
358 lines (332 loc) · 13.2 KB
/
GenNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import sys
import warnings
warnings.filterwarnings('ignore')
import argparse
sys.path.insert(1, os.path.dirname(os.getcwd()) + "/GenNet_utils/")
def main():
args = ArgumentParser().parse_cmd_args()
if args.mode == 'train':
if args.problem_type == "classification":
args.regression = False
elif args.problem_type == "regression":
args.regression = True
else:
print('something went wrong invalid problem type', args.problem_type)
from GenNet_utils.Train_network import train_model
train_model(args)
elif args.mode == "plot":
from GenNet_utils.Create_plots import plot
plot(args)
if args.mode == 'convert':
from GenNet_utils.Convert import convert
convert(args)
if args.mode == "topology":
from GenNet_utils.Topology import topology
topology(args)
if args.mode == "interpret":
from GenNet_utils.Interpret import interpret
interpret(args)
class ArgumentParser():
"""Argumentparser"""
def __init__(self):
parser = argparse.ArgumentParser(description="GenNet: Interpretable neural networks for phenotype prediction.",
epilog="Check the wiki on github.com/arnovanhilten/gennet/ for more info")
subparsers = parser.add_subparsers(help="GenNet main options", dest="mode")
parser_convert = subparsers.add_parser("convert", help="Convert genotype data to hdf5")
self.make_parser_covert(parser_convert)
parser_train = subparsers.add_parser("train", help="Trains the network")
self.make_parser_train(parser_train)
parser_plot = subparsers.add_parser("plot", help="Generate plots from a trained network")
self.make_parser_plot(parser_plot)
parser_topology = subparsers.add_parser("topology", help="Create standard topology files")
self.make_parser_topology(parser_topology)
parser_interpret = subparsers.add_parser("interpret", help="Post-hoc interpretation analysis on the network")
self.make_parser_interpret(parser_interpret)
self.parser = parser
def parse_cmd_args(self):
args = self.parser.parse_args()
return args
def make_parser_covert(self, parser_convert):
parser_convert.add_argument(
"-g", "--genotype",
nargs='+',
type=str,
help="Path/paths to genotype data folder")
parser_convert.add_argument(
'-study_name',
type=str,
required=True,
nargs='+',
help=' Name for saved genotype data, without ext')
parser_convert.add_argument(
'-variants',
type=str,
help="Path to file with row numbers of variants to include, if none is "
"given all variants will be used",
default=None)
parser_convert.add_argument(
"-o", "--out",
type=str,
default=os.getcwd() + '/processed_data/',
help="Path for saving the results, default ./processed_data")
parser_convert.add_argument(
'-ID',
action='store_true',
default=False,
help='Flag to convert minimac data to genotype per subject files first (default '
'False)')
parser_convert.add_argument(
'-vcf',
action='store_true',
default=False,
help='Flag for VCF data to convert')
parser_convert.add_argument(
'-tcm',
type=int,
default=500000000,
help='Modifier for chunk size during TRANSPOSING make it lower if you run out of '
'memory during transposing')
parser_convert.add_argument(
'-step',
type=str,
default='all',
choices=['all', 'hase_convert', 'merge', 'impute_missing', 'exclude', 'transpose',
'merge_transpose', 'checksum'],
help='Modifier to choose step to do')
parser_convert.add_argument(
'-n_jobs',
type=int,
default=1,
help='Choose jobs > 1 for multiple job submission on a cluster')
parser_convert.add_argument(
'-comp_level',
type=int,
default=1,
help='How compressed should the data be? Between 1-9. 1 \
for low compression, 9 is highest compression')
return parser_convert
def make_parser_train(self, parser_train):
parser_train.add_argument(
"-path",
type=str,
help="Path to the data. Subject file, npz masks/topology and/or genotype.h5",
required=True)
parser_train.add_argument(
"-ID",
type=int,
help="Number of the experiment",
required=True)
parser_train.add_argument(
"-genotype_path",
type=str,
help="Path to genotype data if the location is not the same as given in -path",
default="undefined")
parser_train.add_argument(
"-problem_type",
default='classification', type=str,
choices=['classification', 'regression'],
help="Type of problem, choices are: classification or regression")
parser_train.add_argument(
"-wpc",
type=float,
metavar="weight positive class",
default=1,
help="Hyperparameter:weight of the positive class")
parser_train.add_argument(
"-lr", '--learning_rate',
type=float,
metavar="learning rate",
default=0.001,
help="Hyperparameter: learning rate of the optimizer")
parser_train.add_argument(
"-bs", '--batch_size',
type=int,
metavar="batch size",
default=32,
help='Hyperparameter: batch size')
parser_train.add_argument(
"-epochs",
type=int,
metavar="number of epochs",
default=1000,
help='Hyperparameter: batch size')
parser_train.add_argument(
"-workers",
type=int,
metavar="number of workers for multiprocessing",
default=1,
help='Speed-up: number of workers (CPU cores) for multiprocessing. Can cause memory-leaks in some tensorflow versions')
parser_train.add_argument(
"-L1",
metavar="",
type=float,
default=0.01,
help='Hyperparameter: value for the L1 regularization pentalty similar as in lasso, enforces sparsity')
parser_train.add_argument(
"-L1_act",
metavar="",
type=float,
default=0.01,
help='Hyperparameter: value for the L1 regularization on the activation, enforces sparse activations')
parser_train.add_argument(
"-network_name",
type=str,
help="Name of the network",
default="undefined")
parser_train.add_argument(
"-filters",
type=int,
metavar="number of filters for the gene layer",
default=2,
help='Hyperparameter: number of filters for the gene layer')
parser_train.add_argument(
"-mixed_precision",
action='store_true',
default=False,
help='Flag for mixed precision to save memory (can reduce performance)')
parser_train.add_argument(
"-suffix",
metavar="extra_info",
type=str,
default='',
help='Add extra suffix for easier identification of the folder')
parser_train.add_argument(
"-out",
metavar="outfolder",
type=str,
default='undefined',
help='Use this argument to change the output directory')
parser_train.add_argument(
"-mask_order",
metavar="mask_order",
nargs='+',
default=[],
help='Use this to define the order of the mask if they should not be ordered by size. '
'list masks by full name and in order. (e.g. --mask_order SNP_gene_mask mask_gene_local'
' mask_local_mid mask_mid_global)')
parser_train.add_argument(
"-epoch_size",
metavar="epoch_size",
type=int,
default=None,
help='Use this argument to shorten an epoch if an epoch takes to long.'
'Epoch_size will be the new epoch size. Epochs will be shuffled after all data has been seen')
parser_train.add_argument(
"-patience",
metavar="patience",
type=int,
default=50,
help='Number of epochs with no improvement after which training will be stopped.')
parser_train.add_argument(
"-resume",
action='store_true',
default=False,
help='Flag for resuming training with existing weights (if they exist)')
parser_train.add_argument(
"-onehot",
action='store_true',
default=False,
help='Flag for one hot encoding as a first layer in the network')
parser_train.add_argument(
"-init_linear",
action='store_true',
default=False,
help='initialize the one-hot encoding for the neural network with a linear assumption')
return parser_train
def make_parser_plot(self, parser_plot):
parser_plot.add_argument(
"-ID",
type=int,
help="ID of the experiment",
required=True)
parser_plot.add_argument(
"-type",
type=str,
choices=['layer_weight', 'sunburst', 'manhattan_relative_importance'],
required=True)
parser_plot.add_argument(
"-layer_n",
type=int,
help="Only used for layer weight: Number of the to be plotted layer",
metavar="Layer_number:",
default=0)
parser_plot.add_argument(
"-out",
metavar="outfolder",
type=str,
default='undefined',
help='Use this argument to change the output directory')
parser_plot.add_argument(
"-suffix",
metavar="extra_info",
type=str,
default='',
help='Add extra suffix if you used this in training')
return parser_plot
def make_parser_topology(self, parser_topology):
parser_topology.add_argument(
"-type",
default='create_annovar_input', type=str,
choices=['create_annovar_input', 'create_gene_network', 'create_pathway_KEGG', 'create_GTEx_network'],
help="Create annovar input, create network topology from annovar output")
parser_topology.add_argument(
"-path",
type=str,
required=True,
help="Path to the input data. For create_annovar_input this is the folder containing hase: genotype, "
"probes and individuals ")
parser_topology.add_argument(
'-study_name',
type=str,
required=True,
help='Study name used in Convert. Name of the files in the genotype individuals and probe folders')
parser_topology.add_argument(
"-out",
type=str,
help="Path. Location of the results, default to ./processed_data/",
default=os.getcwd() + '/processed_data/')
return parser_topology
def make_parser_interpret(self, parser_topology):
parser_topology.add_argument(
"-type",
default='get_weight_scores', type=str,
choices=['get_weight_scores', 'NID', 'RLIPP', 'DFIM',"PathExplain","DeepExplain"],
help="choose interpretation method, choice")
parser_topology.add_argument(
"-resultpath",
type=str,
required=True,
help="Path to the folder with the trained network (resultfolder) ")
parser_topology.add_argument(
'-layer',
type=int,
required=False,
help='Select a layer for interpretation only necessary for NID')
parser_topology.add_argument(
'-num_eval',
type=int,
required=False,
default = 100,
help='Select the number of SNPs to eval in DFIM')
parser_topology.add_argument(
'-start_rank',
type=int,
required=False,
default = 0,
help='Multiprocessing, start from Nth ranked important variant')
parser_topology.add_argument(
'-end_rank',
type=int,
required=False,
default = 0,
help='Multiprocessing, stop at Nth ranked important SNP')
parser_topology.add_argument(
'-num_sample_pat',
type=int,
required=False,
default = 1000,
help='Select a number of patients to sample for DFIM')
return parser_topology
if __name__ == '__main__':
main()