-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproctor.py
91 lines (60 loc) · 2.54 KB
/
proctor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import mediapipe as mp
import numpy as np
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(min_detection_confidence=0.5, min_tracking_confidence=0.5)
cap = cv2.VideoCapture(0)
prev_state = "STABLE!"
while cap.isOpened():
success, image = cap.read()
image = cv2.cvtColor(cv2.flip(image, 1), cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = face_mesh.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
img_h, img_w, img_c = image.shape
face_3d = []
face_2d = []
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
for idx, lm in enumerate(face_landmarks.landmark):
if idx == 33 or idx == 263 or idx == 1 or idx == 61 or idx == 291 or idx == 199:
x, y = int(lm.x * img_w), int(lm.y * img_h)
face_2d.append([x, y])
face_3d.append([x, y, lm.z])
face_2d = np.array(face_2d, dtype=np.float64)
face_3d = np.array(face_3d, dtype=np.float64)
focal_length = 1 * img_w
cam_matrix = np.array([ [focal_length, 0, img_h / 2],
[0, focal_length, img_w / 2],
[0, 0, 1] ])
dist_matrix = np.zeros((4, 1), dtype=np.float64)
success, rot_vec, trans_vec = cv2.solvePnP(face_3d, face_2d, cam_matrix, dist_matrix)
rmat, jac = cv2.Rodrigues(rot_vec)
angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
x = angles[0] * 360
y = angles[1] * 360
if y < -17:
text = "WARNING!"
elif y > 15:
text = "WARNING!"
elif x>19:
text = "WARNING!"
elif x<-12:
text = "WARNING!"
else:
text = "STABLE"
if prev_state != text:
print(text)
prev_state = text
cv2.putText(image, text, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
else:
text = "WARNING"
cv2.putText(image, text, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
if prev_state != text:
print(text)
prev_state = text
cv2.imshow('SMART PROCTOR', image)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()