diff --git a/assets/schema/dbgpt.sql b/assets/schema/dbgpt.sql
index 181335534..039c6ddb7 100644
--- a/assets/schema/dbgpt.sql
+++ b/assets/schema/dbgpt.sql
@@ -32,7 +32,7 @@ CREATE TABLE IF NOT EXISTS `knowledge_document`
`id` int NOT NULL AUTO_INCREMENT COMMENT 'auto increment id',
`doc_name` varchar(100) NOT NULL COMMENT 'document path name',
`doc_type` varchar(50) NOT NULL COMMENT 'doc type',
- `doc_token` varchar(100) NOT NULL COMMENT 'doc token',
+ `doc_token` varchar(100) NULL COMMENT 'doc token',
`space` varchar(50) NOT NULL COMMENT 'knowledge space',
`chunk_size` int NOT NULL COMMENT 'chunk size',
`last_sync` TIMESTAMP DEFAULT CURRENT_TIMESTAMP COMMENT 'last sync time',
@@ -56,7 +56,7 @@ CREATE TABLE IF NOT EXISTS `document_chunk`
`document_id` int NOT NULL COMMENT 'document parent id',
`content` longtext NOT NULL COMMENT 'chunk content',
`questions` text NULL COMMENT 'chunk related questions',
- `meta_info` varchar(200) NOT NULL COMMENT 'metadata info',
+ `meta_info` text NOT NULL COMMENT 'metadata info',
`gmt_created` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT 'created time',
`gmt_modified` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT 'update time',
PRIMARY KEY (`id`),
diff --git a/dbgpt/app/initialization/serve_initialization.py b/dbgpt/app/initialization/serve_initialization.py
index 146412ecb..95ae873b0 100644
--- a/dbgpt/app/initialization/serve_initialization.py
+++ b/dbgpt/app/initialization/serve_initialization.py
@@ -122,3 +122,11 @@ def register_serve_apps(system_app: SystemApp, cfg: Config, webserver_port: int)
system_app.register(FileServe)
# ################################ File Serve Register End ########################################
+
+ # ################################ Evaluate Serve Register Begin #######################################
+ from dbgpt.serve.evaluate.serve import Serve as EvaluateServe
+
+ # Register serve Evaluate
+ system_app.register(EvaluateServe)
+
+ # ################################ Evaluate Serve Register End ########################################
diff --git a/dbgpt/app/knowledge/api.py b/dbgpt/app/knowledge/api.py
index 6b1a37d38..cb5c8b370 100644
--- a/dbgpt/app/knowledge/api.py
+++ b/dbgpt/app/knowledge/api.py
@@ -447,7 +447,7 @@ def chunk_list(
"doc_type": query_request.doc_type,
"content": query_request.content,
}
- chunk_res = service.get_chunk_list(
+ chunk_res = service.get_chunk_list_page(
query, query_request.page, query_request.page_size
)
res = ChunkQueryResponse(
diff --git a/dbgpt/client/evaluation.py b/dbgpt/client/evaluation.py
new file mode 100644
index 000000000..5d6f80813
--- /dev/null
+++ b/dbgpt/client/evaluation.py
@@ -0,0 +1,28 @@
+"""Evaluation."""
+from typing import List
+
+from dbgpt.core.schema.api import Result
+
+from ..core.interface.evaluation import EvaluationResult
+from ..serve.evaluate.api.schemas import EvaluateServeRequest
+from .client import Client, ClientException
+
+
+async def run_evaluation(
+ client: Client, request: EvaluateServeRequest
+) -> List[EvaluationResult]:
+ """Run evaluation.
+
+ Args:
+ client (Client): The dbgpt client.
+ request (EvaluateServeRequest): The Evaluate Request.
+ """
+ try:
+ res = await client.post("/evaluate/evaluation", request.dict())
+ result: Result = res.json()
+ if result["success"]:
+ return list(result["data"])
+ else:
+ raise ClientException(status=result["err_code"], reason=result)
+ except Exception as e:
+ raise ClientException(f"Failed to run evaluation: {e}")
diff --git a/dbgpt/core/interface/evaluation.py b/dbgpt/core/interface/evaluation.py
index d358bb84d..55776f08b 100644
--- a/dbgpt/core/interface/evaluation.py
+++ b/dbgpt/core/interface/evaluation.py
@@ -287,7 +287,7 @@ def __init__(self):
def register_metric(self, cls: Type[EvaluationMetric]):
"""Register metric."""
- self.metrics[cls.name] = cls
+ self.metrics[cls.name()] = cls
def get_by_name(self, name: str) -> Type[EvaluationMetric]:
"""Get by name."""
@@ -308,4 +308,4 @@ def all_metric_infos(self):
return result
-metric_mange = MetricManage()
+metric_manage = MetricManage()
diff --git a/dbgpt/rag/evaluation/answer.py b/dbgpt/rag/evaluation/answer.py
index 119437064..852824aba 100644
--- a/dbgpt/rag/evaluation/answer.py
+++ b/dbgpt/rag/evaluation/answer.py
@@ -287,7 +287,7 @@ async def _do_evaluation(
contexts=contexts,
passing=result.passing,
raw_dataset=raw_dataset,
- metric_name=metric.name,
+ metric_name=metric.name(),
feedback=result.feedback,
)
)
diff --git a/dbgpt/rag/index/base.py b/dbgpt/rag/index/base.py
index bc47fd161..c1fdccf17 100644
--- a/dbgpt/rag/index/base.py
+++ b/dbgpt/rag/index/base.py
@@ -184,6 +184,7 @@ async def aload_document_with_limit(
max_threads,
)
+ @abstractmethod
def similar_search(
self, text: str, topk: int, filters: Optional[MetadataFilters] = None
) -> List[Chunk]:
@@ -196,16 +197,26 @@ def similar_search(
Return:
List[Chunk]: The similar documents.
"""
- return self.similar_search_with_scores(text, topk, 0.0, filters)
+
+ async def asimilar_search(
+ self,
+ query: str,
+ topk: int,
+ filters: Optional[MetadataFilters] = None,
+ ) -> List[Chunk]:
+ """Async similar_search in vector database."""
+ return await blocking_func_to_async_no_executor(
+ self.similar_search, query, topk, filters
+ )
async def asimilar_search_with_scores(
self,
- doc: str,
+ query: str,
topk: int,
score_threshold: float,
filters: Optional[MetadataFilters] = None,
) -> List[Chunk]:
- """Aynsc similar_search_with_score in vector database."""
+ """Async similar_search_with_score in vector database."""
return await blocking_func_to_async_no_executor(
- self.similar_search_with_scores, doc, topk, score_threshold, filters
+ self.similar_search_with_scores, query, topk, score_threshold, filters
)
diff --git a/dbgpt/rag/operators/evaluation.py b/dbgpt/rag/operators/evaluation.py
index 71c0aff1a..6218d8270 100644
--- a/dbgpt/rag/operators/evaluation.py
+++ b/dbgpt/rag/operators/evaluation.py
@@ -54,7 +54,7 @@ async def _do_evaluation(
contexts=contexts,
passing=result.passing,
raw_dataset=raw_dataset,
- metric_name=metric.name,
+ metric_name=metric.name(),
)
)
return results
diff --git a/dbgpt/rag/retriever/embedding.py b/dbgpt/rag/retriever/embedding.py
index 29026e60c..96aa86199 100644
--- a/dbgpt/rag/retriever/embedding.py
+++ b/dbgpt/rag/retriever/embedding.py
@@ -10,7 +10,6 @@
from dbgpt.rag.retriever.rewrite import QueryRewrite
from dbgpt.storage.vector_store.filters import MetadataFilters
from dbgpt.util.chat_util import run_async_tasks
-from dbgpt.util.executor_utils import blocking_func_to_async_no_executor
from dbgpt.util.tracer import root_tracer
@@ -241,9 +240,7 @@ async def _similarity_search(
"query": query,
},
):
- return await blocking_func_to_async_no_executor(
- self._index_store.similar_search, query, self._top_k, filters
- )
+ return await self._index_store.asimilar_search(query, self._top_k, filters)
async def _run_async_tasks(self, tasks) -> List[Chunk]:
"""Run async tasks."""
diff --git a/dbgpt/serve/agent/agents/controller.py b/dbgpt/serve/agent/agents/controller.py
index 7bd5e09f9..9e7f598cf 100644
--- a/dbgpt/serve/agent/agents/controller.py
+++ b/dbgpt/serve/agent/agents/controller.py
@@ -21,6 +21,7 @@
DefaultAWELLayoutManager,
GptsMemory,
LLMConfig,
+ ResourceType,
ShortTermMemory,
UserProxyAgent,
get_agent_manager,
@@ -43,6 +44,7 @@
from dbgpt.util.json_utils import serialize
from dbgpt.util.tracer import TracerManager
+from ...rag.retriever.knowledge_space import KnowledgeSpaceRetriever
from ..db import GptsMessagesDao
from ..db.gpts_app import GptsApp, GptsAppDao, GptsAppQuery
from ..db.gpts_conversations_db import GptsConversationsDao, GptsConversationsEntity
@@ -602,5 +604,26 @@ async def topic_terminate(
last_gpts_conversation.conv_id, Status.COMPLETE.value
)
+ async def get_knowledge_resources(self, app_code: str, question: str):
+ """Get the knowledge resources."""
+ context = []
+ app: GptsApp = self.get_app(app_code)
+ if app and app.details and len(app.details) > 0:
+ for detail in app.details:
+ if detail and detail.resources and len(detail.resources) > 0:
+ for resource in detail.resources:
+ if resource.type == ResourceType.Knowledge:
+ retriever = KnowledgeSpaceRetriever(
+ space_id=str(resource.value),
+ top_k=CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
+ )
+ chunks = await retriever.aretrieve_with_scores(
+ question, score_threshold=0.3
+ )
+ context.extend([chunk.content for chunk in chunks])
+ else:
+ continue
+ return context
+
multi_agents = MultiAgents(system_app)
diff --git a/dbgpt/serve/agent/evaluation/evaluation.py b/dbgpt/serve/agent/evaluation/evaluation.py
index e81f61a80..5562b983f 100644
--- a/dbgpt/serve/agent/evaluation/evaluation.py
+++ b/dbgpt/serve/agent/evaluation/evaluation.py
@@ -116,8 +116,9 @@ async def _do_evaluation(
contexts=contexts,
passing=result.passing,
raw_dataset=raw_dataset,
- metric_name=metric.name,
+ metric_name=metric.name(),
prediction_cost=prediction_cost,
+ feedback=result.feedback,
)
)
return results
diff --git a/dbgpt/serve/agent/evaluation/evaluation_metric.py b/dbgpt/serve/agent/evaluation/evaluation_metric.py
index c85d2dc85..4d29dcb11 100644
--- a/dbgpt/serve/agent/evaluation/evaluation_metric.py
+++ b/dbgpt/serve/agent/evaluation/evaluation_metric.py
@@ -6,7 +6,13 @@
from dbgpt.core.interface.evaluation import (
BaseEvaluationResult,
EvaluationMetric,
- metric_mange,
+ metric_manage,
+)
+from dbgpt.rag.evaluation.answer import AnswerRelevancyMetric
+from dbgpt.rag.evaluation.retriever import (
+ RetrieverHitRateMetric,
+ RetrieverMRRMetric,
+ RetrieverSimilarityMetric,
)
logger = logging.getLogger(__name__)
@@ -116,5 +122,7 @@ def sync_compute(
)
-metric_mange.register_metric(IntentMetric)
-metric_mange.register_metric(AppLinkMetric)
+metric_manage.register_metric(RetrieverHitRateMetric)
+metric_manage.register_metric(RetrieverMRRMetric)
+metric_manage.register_metric(RetrieverSimilarityMetric)
+metric_manage.register_metric(AnswerRelevancyMetric)
diff --git a/dbgpt/serve/evaluate/__init__.py b/dbgpt/serve/evaluate/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/dbgpt/serve/evaluate/api/__init__.py b/dbgpt/serve/evaluate/api/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/dbgpt/serve/evaluate/api/endpoints.py b/dbgpt/serve/evaluate/api/endpoints.py
new file mode 100644
index 000000000..a7b893c23
--- /dev/null
+++ b/dbgpt/serve/evaluate/api/endpoints.py
@@ -0,0 +1,155 @@
+import logging
+from functools import cache
+from typing import List, Optional
+
+from fastapi import APIRouter, Depends, HTTPException
+from fastapi.security.http import HTTPAuthorizationCredentials, HTTPBearer
+
+from dbgpt.component import ComponentType, SystemApp
+from dbgpt.core.interface.evaluation import metric_manage
+from dbgpt.model.cluster import BaseModelController, WorkerManager, WorkerManagerFactory
+from dbgpt.rag.evaluation.answer import AnswerRelevancyMetric
+from dbgpt.serve.core import Result
+from dbgpt.serve.evaluate.api.schemas import EvaluateServeRequest, EvaluateServeResponse
+from dbgpt.serve.evaluate.config import SERVE_SERVICE_COMPONENT_NAME
+from dbgpt.serve.evaluate.service.service import Service
+
+from ...prompt.service.service import Service as PromptService
+
+router = APIRouter()
+
+# Add your API endpoints here
+
+global_system_app: Optional[SystemApp] = None
+logger = logging.getLogger(__name__)
+
+
+def get_service() -> Service:
+ """Get the service instance"""
+ return global_system_app.get_component(SERVE_SERVICE_COMPONENT_NAME, Service)
+
+
+def get_prompt_service() -> PromptService:
+ return global_system_app.get_component("dbgpt_serve_prompt_service", PromptService)
+
+
+def get_worker_manager() -> WorkerManager:
+ worker_manager = global_system_app.get_component(
+ ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
+ ).create()
+ return worker_manager
+
+
+def get_model_controller() -> BaseModelController:
+ controller = global_system_app.get_component(
+ ComponentType.MODEL_CONTROLLER, BaseModelController
+ )
+ return controller
+
+
+get_bearer_token = HTTPBearer(auto_error=False)
+
+
+@cache
+def _parse_api_keys(api_keys: str) -> List[str]:
+ """Parse the string api keys to a list
+
+ Args:
+ api_keys (str): The string api keys
+
+ Returns:
+ List[str]: The list of api keys
+ """
+ if not api_keys:
+ return []
+ return [key.strip() for key in api_keys.split(",")]
+
+
+async def check_api_key(
+ auth: Optional[HTTPAuthorizationCredentials] = Depends(get_bearer_token),
+ service: Service = Depends(get_service),
+) -> Optional[str]:
+ """Check the api key
+
+ If the api key is not set, allow all.
+
+ Your can pass the token in you request header like this:
+
+ .. code-block:: python
+
+ import requests
+
+ client_api_key = "your_api_key"
+ headers = {"Authorization": "Bearer " + client_api_key}
+ res = requests.get("http://test/hello", headers=headers)
+ assert res.status_code == 200
+
+ """
+ if service.config.api_keys:
+ api_keys = _parse_api_keys(service.config.api_keys)
+ if auth is None or (token := auth.credentials) not in api_keys:
+ raise HTTPException(
+ status_code=401,
+ detail={
+ "error": {
+ "message": "",
+ "type": "invalid_request_error",
+ "param": None,
+ "code": "invalid_api_key",
+ }
+ },
+ )
+ return token
+ else:
+ # api_keys not set; allow all
+ return None
+
+
+@router.get("/health", dependencies=[Depends(check_api_key)])
+async def health():
+ """Health check endpoint"""
+ return {"status": "ok"}
+
+
+@router.get("/test_auth", dependencies=[Depends(check_api_key)])
+async def test_auth():
+ """Test auth endpoint"""
+ return {"status": "ok"}
+
+
+@router.get("/scenes")
+async def get_scenes():
+ scene_list = [{"recall": "召回评测"}, {"app": "应用评测"}]
+
+ return Result.succ(scene_list)
+
+
+@router.post("/evaluation")
+async def evaluation(
+ request: EvaluateServeRequest,
+ service: Service = Depends(get_service),
+) -> Result:
+ """Evaluate results by the scene
+
+ Args:
+ request (EvaluateServeRequest): The request
+ service (Service): The service
+ Returns:
+ ServerResponse: The response
+ """
+ return Result.succ(
+ await service.run_evaluation(
+ request.scene_key,
+ request.scene_value,
+ request.datasets,
+ request.context,
+ request.evaluate_metrics,
+ )
+ )
+
+
+def init_endpoints(system_app: SystemApp) -> None:
+ """Initialize the endpoints"""
+ global global_system_app
+ system_app.register(Service)
+ global_system_app = system_app
diff --git a/dbgpt/serve/evaluate/api/schemas.py b/dbgpt/serve/evaluate/api/schemas.py
new file mode 100644
index 000000000..76a782186
--- /dev/null
+++ b/dbgpt/serve/evaluate/api/schemas.py
@@ -0,0 +1,63 @@
+from enum import Enum
+from typing import Any, Dict, List, Optional
+
+from dbgpt._private.pydantic import BaseModel, Field
+
+from ..config import SERVE_APP_NAME_HUMP
+
+
+class EvaluationScene(Enum):
+ RECALL = "recall"
+ APP = "app"
+
+
+class DatasetStorageType(Enum):
+ OSS = "oss"
+ DB = "db"
+
+
+class EvaluateServeRequest(BaseModel):
+ evaluate_code: Optional[str] = Field(None, description="evaluation code")
+ scene_key: Optional[str] = Field(None, description="evaluation scene key")
+ scene_value: Optional[str] = Field(None, description="evaluation scene value")
+ datasets_name: Optional[str] = Field(None, description="evaluation datasets name")
+ datasets: Optional[List[dict]] = Field(None, description="datasets")
+ evaluate_metrics: Optional[List[str]] = Field(
+ None, description="evaluation metrics"
+ )
+ context: Optional[dict] = Field(None, description="The context of the evaluate")
+ user_name: Optional[str] = Field(None, description="user name")
+ user_id: Optional[str] = Field(None, description="user id")
+ sys_code: Optional[str] = Field(None, description="system code")
+ parallel_num: Optional[int] = Field(None, description="system code")
+ state: Optional[str] = Field(None, description="evaluation state")
+ result: Optional[str] = Field(None, description="evaluation result")
+ storage_type: Optional[str] = Field(None, comment="datasets storage type")
+ average_score: Optional[str] = Field(None, description="evaluation average score")
+ log_info: Optional[str] = Field(None, description="evaluation log_info")
+ gmt_create: Optional[str] = Field(None, description="create time")
+ gmt_modified: Optional[str] = Field(None, description="create time")
+
+
+class EvaluateServeResponse(EvaluateServeRequest):
+ class Config:
+ title = f"EvaluateServeResponse for {SERVE_APP_NAME_HUMP}"
+
+
+class DatasetServeRequest(BaseModel):
+ code: Optional[str] = Field(None, description="dataset code")
+ name: Optional[str] = Field(None, description="dataset name")
+ file_type: Optional[str] = Field(None, description="dataset file type")
+ storage_type: Optional[str] = Field(None, comment="datasets storage type")
+ storage_position: Optional[str] = Field(None, comment="datasets storage position")
+ datasets_count: Optional[int] = Field(None, comment="datasets row count")
+ have_answer: Optional[bool] = Field(None, comment="datasets have answer")
+ members: Optional[str] = Field(None, comment="datasets manager members")
+ user_name: Optional[str] = Field(None, description="user name")
+ user_id: Optional[str] = Field(None, description="user id")
+ sys_code: Optional[str] = Field(None, description="system code")
+
+
+class DatasetServeResponse(DatasetServeRequest):
+ gmt_create: Optional[str] = Field(None, description="create time")
+ gmt_modified: Optional[str] = Field(None, description="create time")
diff --git a/dbgpt/serve/evaluate/config.py b/dbgpt/serve/evaluate/config.py
new file mode 100644
index 000000000..45c86f43b
--- /dev/null
+++ b/dbgpt/serve/evaluate/config.py
@@ -0,0 +1,31 @@
+from dataclasses import dataclass, field
+from typing import Optional
+
+from dbgpt.serve.core import BaseServeConfig
+
+APP_NAME = "evaluate"
+SERVE_APP_NAME = "dbgpt_serve_evaluate"
+SERVE_APP_NAME_HUMP = "dbgpt_serve_evaluate"
+SERVE_CONFIG_KEY_PREFIX = "dbgpt.serve.evaluate."
+SERVE_SERVICE_COMPONENT_NAME = f"{SERVE_APP_NAME}_service"
+# Database table name
+SERVER_APP_TABLE_NAME = "dbgpt_serve_evaluate"
+
+
+@dataclass
+class ServeConfig(BaseServeConfig):
+ """Parameters for the serve command"""
+
+ # TODO: add your own parameters here
+ api_keys: Optional[str] = field(
+ default=None, metadata={"help": "API keys for the endpoint, if None, allow all"}
+ )
+
+ default_user: Optional[str] = field(
+ default=None,
+ metadata={"help": "Default user name for evaluate"},
+ )
+ default_sys_code: Optional[str] = field(
+ default=None,
+ metadata={"help": "Default system code for evaluate"},
+ )
diff --git a/dbgpt/serve/evaluate/dependencies.py b/dbgpt/serve/evaluate/dependencies.py
new file mode 100644
index 000000000..8598ecd97
--- /dev/null
+++ b/dbgpt/serve/evaluate/dependencies.py
@@ -0,0 +1 @@
+# Define your dependencies here
diff --git a/dbgpt/serve/evaluate/models/__init__.py b/dbgpt/serve/evaluate/models/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/dbgpt/serve/evaluate/models/models.py b/dbgpt/serve/evaluate/models/models.py
new file mode 100644
index 000000000..94b399503
--- /dev/null
+++ b/dbgpt/serve/evaluate/models/models.py
@@ -0,0 +1,157 @@
+"""This is an auto-generated model file
+You can define your own models and DAOs here
+"""
+import json
+import uuid
+from datetime import datetime
+from typing import Any, Dict, Union
+
+from sqlalchemy import Column, DateTime, Index, Integer, String, Text, UniqueConstraint
+
+from dbgpt.agent.core.schema import Status
+from dbgpt.storage.metadata import BaseDao, Model, db
+
+from ..api.schemas import EvaluateServeRequest, EvaluateServeResponse
+from ..config import SERVER_APP_TABLE_NAME, ServeConfig
+
+
+class ServeEntity(Model):
+ __tablename__ = "evaluate_manage"
+ __table_args__ = (
+ UniqueConstraint(
+ "evaluate_code",
+ name="uk_evaluate_code",
+ ),
+ )
+ id = Column(Integer, primary_key=True, comment="Auto increment id")
+ evaluate_code = Column(String(256), comment="evaluate Code")
+ scene_key = Column(String(100), comment="evaluate scene key")
+ scene_value = Column(String(256), comment="evaluate scene value")
+ context = Column(Text, comment="evaluate scene run context")
+ evaluate_metrics = Column(String(599), comment="evaluate metrics")
+ datasets_name = Column(String(256), comment="datasets name")
+ datasets = Column(Text, comment="datasets")
+ storage_type = Column(String(256), comment="datasets storage type")
+ parallel_num = Column(Integer, comment="datasets run parallel num")
+ state = Column(String(100), comment="evaluate state")
+ result = Column(Text, comment="evaluate result")
+ log_info = Column(Text, comment="evaluate log info")
+ average_score = Column(Text, comment="evaluate average score")
+ user_id = Column(String(100), index=True, nullable=True, comment="User id")
+ user_name = Column(String(128), index=True, nullable=True, comment="User name")
+ sys_code = Column(String(128), index=True, nullable=True, comment="System code")
+ gmt_create = Column(DateTime, default=datetime.now, comment="Record creation time")
+ gmt_modified = Column(
+ DateTime,
+ default=datetime.now,
+ onupdate=datetime.now,
+ comment="Record update time",
+ )
+
+ def __repr__(self):
+ return f"ServeEntity(id={self.id}, evaluate_code='{self.evaluate_code}', scene_key='{self.scene_key}', scene_value='{self.scene_value}', datasets='{self.datasets}', user_id='{self.user_id}', user_name='{self.user_name}', sys_code='{self.sys_code}', gmt_created='{self.gmt_created}', gmt_modified='{self.gmt_modified}')"
+
+
+class ServeDao(BaseDao[ServeEntity, EvaluateServeRequest, EvaluateServeResponse]):
+ """The DAO class for Prompt"""
+
+ def __init__(self, serve_config: ServeConfig):
+ super().__init__()
+ self._serve_config = serve_config
+
+ def from_request(
+ self, request: Union[EvaluateServeRequest, Dict[str, Any]]
+ ) -> ServeEntity:
+ """Convert the request to an entity
+
+ Args:
+ request (Union[EvaluateServeRequest, Dict[str, Any]]): The request
+
+ Returns:
+ T: The entity
+ """
+ request_dict = (
+ request.dict() if isinstance(request, EvaluateServeRequest) else request
+ )
+ entity = ServeEntity(
+ evaluate_code=request_dict.get("evaluate_code", None),
+ scene_key=request_dict.get("scene_key", None),
+ scene_value=request_dict.get("scene_value", None),
+ context=json.dumps(request_dict.get("context", None))
+ if request_dict.get("context", None)
+ else None,
+ evaluate_metrics=request_dict.get("evaluate_metrics", None),
+ datasets_name=request_dict.get("datasets_name", None),
+ datasets=request_dict.get("datasets", None),
+ storage_type=request_dict.get("storage_type", None),
+ parallel_num=request_dict.get("parallel_num", 1),
+ state=request_dict.get("state", Status.TODO.value),
+ result=request_dict.get("result", None),
+ average_score=request_dict.get("average_score", None),
+ log_info=request_dict.get("log_info", None),
+ user_id=request_dict.get("user_id", None),
+ user_name=request_dict.get("user_name", None),
+ sys_code=request_dict.get("sys_code", None),
+ )
+ if not entity.evaluate_code:
+ entity.evaluate_code = uuid.uuid1().hex
+ return entity
+
+ def to_request(self, entity: ServeEntity) -> EvaluateServeRequest:
+ """Convert the entity to a request
+
+ Args:
+ entity (T): The entity
+
+ Returns:
+ REQ: The request
+ """
+
+ return EvaluateServeRequest(
+ evaluate_code=entity.evaluate_code,
+ scene_key=entity.scene_key,
+ scene_value=entity.scene_value,
+ datasets_name=entity.datasets_name,
+ datasets=entity.datasets,
+ storage_type=entity.storage_type,
+ evaluate_metrics=entity.evaluate_metrics,
+ context=json.loads(entity.context) if entity.context else None,
+ user_name=entity.user_name,
+ user_id=entity.user_id,
+ sys_code=entity.sys_code,
+ state=entity.state,
+ result=entity.result,
+ average_score=entity.average_score,
+ log_info=entity.log_info,
+ )
+
+ def to_response(self, entity: ServeEntity) -> EvaluateServeResponse:
+ """Convert the entity to a response
+
+ Args:
+ entity (T): The entity
+
+ Returns:
+ RES: The response
+ """
+ gmt_created_str = entity.gmt_create.strftime("%Y-%m-%d %H:%M:%S")
+ gmt_modified_str = entity.gmt_modified.strftime("%Y-%m-%d %H:%M:%S")
+ return EvaluateServeResponse(
+ evaluate_code=entity.evaluate_code,
+ scene_key=entity.scene_key,
+ scene_value=entity.scene_value,
+ datasets_name=entity.datasets_name,
+ datasets=entity.datasets,
+ storage_type=entity.storage_type,
+ evaluate_metrics=entity.evaluate_metrics,
+ context=json.loads(entity.context) if entity.context else None,
+ user_name=entity.user_name,
+ user_id=entity.user_id,
+ sys_code=entity.sys_code,
+ state=entity.state,
+ result=entity.result,
+ average_score=entity.average_score,
+ log_info=entity.log_info,
+ gmt_create=gmt_created_str,
+ gmt_modified=gmt_modified_str,
+ )
diff --git a/dbgpt/serve/evaluate/models/models_dataset.py b/dbgpt/serve/evaluate/models/models_dataset.py
new file mode 100644
index 000000000..bc1d495d0
--- /dev/null
+++ b/dbgpt/serve/evaluate/models/models_dataset.py
@@ -0,0 +1,122 @@
+from datetime import datetime
+from typing import Any, Dict, Union
+
+from sqlalchemy import Column, DateTime, Index, Integer, String, Text, UniqueConstraint
+
+from dbgpt.storage.metadata import BaseDao, Model, db
+
+from ..api.schemas import DatasetServeRequest, DatasetServeResponse
+from ..config import SERVER_APP_TABLE_NAME, ServeConfig
+
+
+class DatasetServeEntity(Model):
+ __tablename__ = "evaluate_datasets"
+ __table_args__ = (
+ UniqueConstraint(
+ "code",
+ name="uk_dataset",
+ ),
+ UniqueConstraint(
+ "name",
+ name="uk_dataset_name",
+ ),
+ )
+ id = Column(Integer, primary_key=True, comment="Auto increment id")
+ code = Column(String(256), comment="evaluate datasets Code")
+ name = Column(String(1000), comment="evaluate datasets Name")
+ file_type = Column(String(256), comment="datasets file type")
+ storage_type = Column(String(256), comment="datasets storage type")
+ storage_position = Column(Text, comment="datasets storage position")
+ datasets_count = Column(Integer, comment="datasets row count")
+ have_answer = Column(String(10), comment="datasets have answer")
+ members = Column(String(1000), comment="evaluate datasets members")
+ user_id = Column(String(100), index=True, nullable=True, comment="User id")
+ user_name = Column(String(128), index=True, nullable=True, comment="User name")
+ sys_code = Column(String(128), index=True, nullable=True, comment="System code")
+ gmt_create = Column(DateTime, default=datetime.now, comment="Record creation time")
+ gmt_modified = Column(
+ DateTime,
+ default=datetime.now,
+ onupdate=datetime.now,
+ comment="Record update time",
+ )
+
+ def __repr__(self):
+ return f"ServeEntity(id={self.id}, code='{self.code}', name='{self.name}', file_type='{self.file_type}', storage_type='{self.storage_type}', storage_position='{self.storage_position}', datasets_count='{self.datasets_count}', user_id='{self.user_id}', user_name='{self.user_name}', sys_code='{self.sys_code}', gmt_create='{self.gmt_create}', gmt_modified='{self.gmt_modified}')"
+
+
+class DatasetServeDao(
+ BaseDao[DatasetServeEntity, DatasetServeRequest, DatasetServeResponse]
+):
+ """The DAO class for Prompt"""
+
+ def __init__(self, serve_config: ServeConfig):
+ super().__init__()
+ self._serve_config = serve_config
+
+ def from_request(
+ self, request: Union[DatasetServeRequest, Dict[str, Any]]
+ ) -> DatasetServeEntity:
+ """Convert the request to an entity
+
+ Args:
+ request (Union[DatasetServeRequest, Dict[str, Any]]): The request
+
+ Returns:
+ T: The entity
+ """
+ request_dict = (
+ request.dict() if isinstance(request, DatasetServeRequest) else request
+ )
+ entity = DatasetServeEntity(**request_dict)
+ return entity
+
+ def to_request(self, entity: DatasetServeEntity) -> DatasetServeRequest:
+ """Convert the entity to a request
+
+ Args:
+ entity (T): The entity
+
+ Returns:
+ REQ: The request
+ """
+ return DatasetServeRequest(
+ code=entity.code,
+ name=entity.name,
+ file_type=entity.file_type,
+ storage_type=entity.storage_type,
+ storage_position=entity.storage_position,
+ datasets_count=entity.datasets_count,
+ have_answer=entity.have_answer,
+ members=entity.members,
+ user_name=entity.user_name,
+ user_id=entity.user_id,
+ sys_code=entity.sys_code,
+ )
+
+ def to_response(self, entity: DatasetServeEntity) -> DatasetServeResponse:
+ """Convert the entity to a response
+
+ Args:
+ entity (T): The entity
+
+ Returns:
+ RES: The response
+ """
+ gmt_created_str = entity.gmt_create.strftime("%Y-%m-%d %H:%M:%S")
+ gmt_modified_str = entity.gmt_modified.strftime("%Y-%m-%d %H:%M:%S")
+ return DatasetServeResponse(
+ code=entity.code,
+ name=entity.name,
+ file_type=entity.file_type,
+ storage_type=entity.storage_type,
+ storage_position=entity.storage_position,
+ datasets_count=entity.datasets_count,
+ have_answer=entity.have_answer,
+ members=entity.members,
+ user_name=entity.user_name,
+ user_id=entity.user_id,
+ sys_code=entity.sys_code,
+ gmt_create=gmt_created_str,
+ gmt_modified=gmt_modified_str,
+ )
diff --git a/dbgpt/serve/evaluate/serve.py b/dbgpt/serve/evaluate/serve.py
new file mode 100644
index 000000000..6c9a7f224
--- /dev/null
+++ b/dbgpt/serve/evaluate/serve.py
@@ -0,0 +1,119 @@
+import logging
+from typing import List, Optional, Union
+
+from sqlalchemy import URL
+
+from dbgpt.component import SystemApp
+from dbgpt.serve.core import BaseServe
+from dbgpt.storage.metadata import DatabaseManager
+
+from .api.endpoints import init_endpoints, router
+from .config import APP_NAME, SERVE_APP_NAME, SERVE_APP_NAME_HUMP
+
+logger = logging.getLogger(__name__)
+
+
+class Serve(BaseServe):
+ """Serve component
+
+ Examples:
+
+ Register the serve component to the system app
+
+ .. code-block:: python
+
+ from fastapi import FastAPI
+ from dbgpt import SystemApp
+ from dbgpt.core import PromptTemplate
+ from dbgpt.serve.prompt.serve import Serve, SERVE_APP_NAME
+
+ app = FastAPI()
+ system_app = SystemApp(app)
+ system_app.register(Serve, api_prefix="/api/v1/prompt")
+ system_app.on_init()
+ # Run before start hook
+ system_app.before_start()
+
+ prompt_serve = system_app.get_component(SERVE_APP_NAME, Serve)
+
+ # Get the prompt manager
+ prompt_manager = prompt_serve.prompt_manager
+ prompt_manager.save(
+ PromptTemplate(template="Hello {name}", input_variables=["name"]),
+ prompt_name="prompt_name",
+ )
+
+ With your database url
+
+ .. code-block:: python
+
+ from fastapi import FastAPI
+ from dbgpt import SystemApp
+ from dbgpt.core import PromptTemplate
+ from dbgpt.serve.prompt.serve import Serve, SERVE_APP_NAME
+
+ app = FastAPI()
+ system_app = SystemApp(app)
+ system_app.register(
+ Serve,
+ api_prefix="/api/v1/prompt",
+ db_url_or_db="sqlite:///:memory:",
+ try_create_tables=True,
+ )
+ system_app.on_init()
+ # Run before start hook
+ system_app.before_start()
+
+ prompt_serve = system_app.get_component(SERVE_APP_NAME, Serve)
+
+ # Get the prompt manager
+ prompt_manager = prompt_serve.prompt_manager
+ prompt_manager.save(
+ PromptTemplate(template="Hello {name}", input_variables=["name"]),
+ prompt_name="prompt_name",
+ )
+
+ """
+
+ name = SERVE_APP_NAME
+
+ def __init__(
+ self,
+ system_app: SystemApp,
+ api_prefix: Optional[List[str]] = None,
+ api_tags: Optional[List[str]] = None,
+ db_url_or_db: Union[str, URL, DatabaseManager] = None,
+ try_create_tables: Optional[bool] = False,
+ ):
+ if api_prefix is None:
+ api_prefix = [f"/api/v1/{APP_NAME}", f"/api/v2/serve/{APP_NAME}"]
+ if api_tags is None:
+ api_tags = [SERVE_APP_NAME_HUMP]
+ super().__init__(
+ system_app, api_prefix, api_tags, db_url_or_db, try_create_tables
+ )
+
+ def init_app(self, system_app: SystemApp):
+ if self._app_has_initiated:
+ return
+ self._system_app = system_app
+ for prefix in self._api_prefix:
+ self._system_app.app.include_router(
+ router, prefix=prefix, tags=self._api_tags
+ )
+ init_endpoints(self._system_app)
+ self._app_has_initiated = True
+
+ def on_init(self):
+ """Called before the start of the application.
+
+ You can do some initialization here.
+ """
+ # import your own module here to ensure the module is loaded before the application starts
+
+ def before_start(self):
+ """Called before the start of the application.
+
+ You can do some initialization here.
+ """
+ # import your own module here to ensure the module is loaded before the application starts
diff --git a/dbgpt/serve/evaluate/service/__init__.py b/dbgpt/serve/evaluate/service/__init__.py
new file mode 100644
index 000000000..e69de29bb
diff --git a/dbgpt/serve/evaluate/service/service.py b/dbgpt/serve/evaluate/service/service.py
new file mode 100644
index 000000000..2e94a2621
--- /dev/null
+++ b/dbgpt/serve/evaluate/service/service.py
@@ -0,0 +1,186 @@
+import asyncio
+import io
+import json
+import logging
+from concurrent.futures import ThreadPoolExecutor
+from typing import List, Optional
+
+from dbgpt._private.config import Config
+from dbgpt.component import ComponentType, SystemApp
+from dbgpt.configs.model_config import EMBEDDING_MODEL_CONFIG
+from dbgpt.core.interface.evaluation import (
+ EVALUATE_FILE_COL_ANSWER,
+ EvaluationResult,
+ metric_manage,
+)
+from dbgpt.model import DefaultLLMClient
+from dbgpt.model.cluster import WorkerManagerFactory
+from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
+from dbgpt.rag.evaluation import RetrieverEvaluator
+from dbgpt.rag.evaluation.answer import AnswerRelevancyMetric
+from dbgpt.rag.evaluation.retriever import RetrieverSimilarityMetric
+from dbgpt.serve.core import BaseService
+from dbgpt.serve.rag.operators.knowledge_space import SpaceRetrieverOperator
+from dbgpt.storage.metadata import BaseDao
+from dbgpt.storage.vector_store.base import VectorStoreConfig
+
+from ...agent.agents.controller import multi_agents
+from ...agent.evaluation.evaluation import AgentEvaluator, AgentOutputOperator
+from ...agent.evaluation.evaluation_metric import IntentMetric
+from ...prompt.service.service import Service as PromptService
+from ...rag.connector import VectorStoreConnector
+from ...rag.service.service import Service as RagService
+from ..api.schemas import EvaluateServeRequest, EvaluateServeResponse, EvaluationScene
+from ..config import SERVE_CONFIG_KEY_PREFIX, SERVE_SERVICE_COMPONENT_NAME, ServeConfig
+from ..models.models import ServeDao, ServeEntity
+
+logger = logging.getLogger(__name__)
+
+CFG = Config()
+executor = ThreadPoolExecutor(max_workers=5)
+
+
+def get_rag_service(system_app) -> RagService:
+ return system_app.get_component("dbgpt_rag_service", RagService)
+
+
+def get_prompt_service(system_app) -> PromptService:
+ return system_app.get_component("dbgpt_serve_prompt_service", PromptService)
+
+
+class Service(BaseService[ServeEntity, EvaluateServeRequest, EvaluateServeResponse]):
+ """The service class for Evaluate"""
+
+ name = SERVE_SERVICE_COMPONENT_NAME
+
+ def __init__(self, system_app: SystemApp, dao: Optional[ServeDao] = None):
+ self._system_app = None
+ self._serve_config: ServeConfig = None
+ self._dao: ServeDao = dao
+ super().__init__(system_app)
+ self.rag_service = get_rag_service(system_app)
+ self.prompt_service = get_prompt_service(system_app)
+
+ def init_app(self, system_app: SystemApp) -> None:
+ """Initialize the service
+
+ Args:
+ system_app (SystemApp): The system app
+ """
+ self._serve_config = ServeConfig.from_app_config(
+ system_app.config, SERVE_CONFIG_KEY_PREFIX
+ )
+ self._dao = self._dao or ServeDao(self._serve_config)
+ self._system_app = system_app
+
+ @property
+ def dao(self) -> BaseDao[ServeEntity, EvaluateServeRequest, EvaluateServeResponse]:
+ """Returns the internal DAO."""
+ return self._dao
+
+ @property
+ def config(self) -> ServeConfig:
+ """Returns the internal ServeConfig."""
+ return self._serve_config
+
+ async def run_evaluation(
+ self,
+ scene_key,
+ scene_value,
+ datasets: List[dict],
+ context: Optional[dict] = None,
+ evaluate_metrics: Optional[List[str]] = None,
+ parallel_num: Optional[int] = 1,
+ ) -> List[List[EvaluationResult]]:
+ """Evaluate results
+
+ Args:
+ scene_key (str): The scene_key
+ scene_value (str): The scene_value
+ datasets (List[dict]): The datasets
+ context (Optional[dict]): The run context
+ evaluate_metrics (Optional[str]): The metric_names
+ parallel_num (Optional[int]): The parallel_num
+
+ Returns:
+ List[List[EvaluationResult]]: The response
+ """
+
+ results = []
+ if EvaluationScene.RECALL.value == scene_key:
+ embedding_factory = CFG.SYSTEM_APP.get_component(
+ "embedding_factory", EmbeddingFactory
+ )
+ embeddings = embedding_factory.create(
+ EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
+ )
+
+ config = VectorStoreConfig(
+ name=scene_value,
+ embedding_fn=embeddings,
+ )
+ vector_store_connector = VectorStoreConnector(
+ vector_store_type=CFG.VECTOR_STORE_TYPE,
+ vector_store_config=config,
+ )
+ evaluator = RetrieverEvaluator(
+ operator_cls=SpaceRetrieverOperator,
+ embeddings=embeddings,
+ operator_kwargs={
+ "space_id": str(scene_value),
+ "top_k": CFG.KNOWLEDGE_SEARCH_TOP_SIZE,
+ "vector_store_connector": vector_store_connector,
+ },
+ )
+ metrics = []
+ metric_name_list = evaluate_metrics
+ for name in metric_name_list:
+ if name == "RetrieverSimilarityMetric":
+ metrics.append(RetrieverSimilarityMetric(embeddings=embeddings))
+ else:
+ metrics.append(metric_manage.get_by_name(name)())
+
+ for dataset in datasets:
+ chunks = self.rag_service.get_chunk_list(
+ {"doc_name": dataset.get("doc_name")}
+ )
+ contexts = [chunk.content for chunk in chunks]
+ dataset["contexts"] = contexts
+ results = await evaluator.evaluate(
+ datasets, metrics=metrics, parallel_num=parallel_num
+ )
+ elif EvaluationScene.APP.value == scene_key:
+ evaluator = AgentEvaluator(
+ operator_cls=AgentOutputOperator,
+ operator_kwargs={
+ "app_code": scene_value,
+ },
+ )
+
+ metrics = []
+ metric_name_list = evaluate_metrics
+ for name in metric_name_list:
+ if name == AnswerRelevancyMetric.name():
+ worker_manager = CFG.SYSTEM_APP.get_component(
+ ComponentType.WORKER_MANAGER_FACTORY, WorkerManagerFactory
+ ).create()
+ llm_client = DefaultLLMClient(worker_manager=worker_manager)
+ prompt = self.prompt_service.get_template(context.get("prompt"))
+ metrics.append(
+ AnswerRelevancyMetric(
+ llm_client=llm_client,
+ model_name=context.get("model"),
+ prompt_template=prompt.template,
+ )
+ )
+ for dataset in datasets:
+ context = await multi_agents.get_knowledge_resources(
+ app_code=scene_value, question=dataset.get("query")
+ )
+ dataset[EVALUATE_FILE_COL_ANSWER] = context
+ else:
+ metrics.append(metric_manage.get_by_name(name)())
+ results = await evaluator.evaluate(
+ dataset=datasets, metrics=metrics, parallel_num=parallel_num
+ )
+ return results
diff --git a/dbgpt/serve/rag/operators/knowledge_space.py b/dbgpt/serve/rag/operators/knowledge_space.py
index 3d2e1d846..f719547ff 100644
--- a/dbgpt/serve/rag/operators/knowledge_space.py
+++ b/dbgpt/serve/rag/operators/knowledge_space.py
@@ -23,10 +23,8 @@
)
from dbgpt.core.awel.task.base import IN, OUT
from dbgpt.core.interface.operators.prompt_operator import BasePromptBuilderOperator
-from dbgpt.rag.embedding.embedding_factory import EmbeddingFactory
-from dbgpt.rag.retriever.embedding import EmbeddingRetriever
-from dbgpt.serve.rag.connector import VectorStoreConnector
-from dbgpt.storage.vector_store.base import VectorStoreConfig
+from dbgpt.core.interface.operators.retriever import RetrieverOperator
+from dbgpt.serve.rag.retriever.knowledge_space import KnowledgeSpaceRetriever
from dbgpt.util.function_utils import rearrange_args_by_type
from dbgpt.util.i18n_utils import _
@@ -40,7 +38,7 @@ def _load_space_name() -> List[OptionValue]:
]
-class SpaceRetrieverOperator(MapOperator[IN, OUT]):
+class SpaceRetrieverOperator(RetrieverOperator[IN, OUT]):
"""knowledge space retriever operator."""
metadata = ViewMetadata(
@@ -71,64 +69,48 @@ class SpaceRetrieverOperator(MapOperator[IN, OUT]):
documentation_url="https://github.com/openai/openai-python",
)
- def __init__(self, space_name: str, recall_score: Optional[float] = 0.3, **kwargs):
+ def __init__(
+ self,
+ space_id: str,
+ top_k: Optional[int] = 5,
+ recall_score: Optional[float] = 0.3,
+ **kwargs,
+ ):
"""
Args:
- space_name (str): The space name.
+ space_id (str): The space name.
+ top_k (Optional[int]): top k.
recall_score (Optional[float], optional): The recall score. Defaults to 0.3.
"""
- self._space_name = space_name
+ self._space_id = space_id
+ self._top_k = top_k
self._recall_score = recall_score
self._service = KnowledgeService()
- embedding_factory = CFG.SYSTEM_APP.get_component(
- "embedding_factory", EmbeddingFactory
- )
- embedding_fn = embedding_factory.create(
- model_name=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]
- )
- config = VectorStoreConfig(name=self._space_name, embedding_fn=embedding_fn)
- self._vector_store_connector = VectorStoreConnector(
- vector_store_type=CFG.VECTOR_STORE_TYPE,
- vector_store_config=config,
- )
super().__init__(**kwargs)
- async def map(self, query: IN) -> OUT:
+ def retrieve(self, query: IN) -> OUT:
"""Map input value to output value.
Args:
- input_value (IN): The input value.
+ query (IN): The input value.
Returns:
OUT: The output value.
"""
- space_context = self._service.get_space_context(self._space_name)
- top_k = (
- CFG.KNOWLEDGE_SEARCH_TOP_SIZE
- if space_context is None
- else int(space_context["embedding"]["topk"])
- )
- recall_score = (
- CFG.KNOWLEDGE_SEARCH_RECALL_SCORE
- if space_context is None
- else float(space_context["embedding"]["recall_score"])
- )
- embedding_retriever = EmbeddingRetriever(
- top_k=top_k,
- vector_store_connector=self._vector_store_connector,
+ space_retriever = KnowledgeSpaceRetriever(
+ space_id=self._space_id,
+ top_k=self._top_k,
)
if isinstance(query, str):
- candidates = await embedding_retriever.aretrieve_with_scores(
- query, recall_score
- )
+ candidates = space_retriever.retrieve_with_scores(query, self._recall_score)
elif isinstance(query, list):
candidates = [
- await embedding_retriever.aretrieve_with_scores(q, recall_score)
+ space_retriever.retrieve_with_scores(q, self._recall_score)
for q in query
]
candidates = reduce(lambda x, y: x + y, candidates)
- return [candidate.content for candidate in candidates]
+ return candidates
class KnowledgeSpacePromptBuilderOperator(
diff --git a/dbgpt/serve/rag/service/service.py b/dbgpt/serve/rag/service/service.py
index dbc308d99..890d58a52 100644
--- a/dbgpt/serve/rag/service/service.py
+++ b/dbgpt/serve/rag/service/service.py
@@ -320,6 +320,10 @@ def update_document(self, request: DocumentServeRequest):
entity = self._document_dao.from_response(document)
if request.doc_name:
entity.doc_name = request.doc_name
+ update_chunk = self._chunk_dao.get_one({"document_id": entity.id})
+ if update_chunk:
+ update_chunk.doc_name = request.doc_name
+ self._chunk_dao.update_chunk(update_chunk)
if len(request.questions) == 0:
request.questions = ""
questions = [
@@ -411,13 +415,20 @@ def get_document_list(
"""
return self._document_dao.get_list_page(request, page, page_size)
- def get_chunk_list(self, request: QUERY_SPEC, page: int, page_size: int):
- """get document chunks
+ def get_chunk_list_page(self, request: QUERY_SPEC, page: int, page_size: int):
+ """get document chunks with page
Args:
- request: QUERY_SPEC
"""
return self._chunk_dao.get_list_page(request, page, page_size)
+ def get_chunk_list(self, request: QUERY_SPEC):
+ """get document chunks
+ Args:
+ - request: QUERY_SPEC
+ """
+ return self._chunk_dao.get_list(request)
+
def update_chunk(self, request: ChunkServeRequest):
"""update knowledge document chunk"""
if not request.id:
diff --git a/docs/docs/api/evaluation.md b/docs/docs/api/evaluation.md
new file mode 100644
index 000000000..571d32e95
--- /dev/null
+++ b/docs/docs/api/evaluation.md
@@ -0,0 +1,205 @@
+# Evaluation
+
+Get started with the Evaluation API
+
+
+### Create Evaluation
+
+```python
+POST /api/v2/serve/evaluate/evaluation
+```
+import Tabs from '@theme/Tabs';
+import TabItem from '@theme/TabItem';
+
+
+
+
+
+```shell
+DBGPT_API_KEY=dbgpt
+SPACE_ID={YOUR_SPACE_ID}
+
+curl -X POST "http://localhost:5670/api/v2/serve/evaluate/evaluation"
+-H "Authorization: Bearer $DBGPT_API_KEY" \
+-H "accept: application/json" \
+-H "Content-Type: application/json" \
+-d '{
+ "scene_key": "recall",
+ "scene_value":147,
+ "context":{"top_k":5},
+ "sys_code":"xx",
+ "evaluate_metrics":["RetrieverHitRateMetric","RetrieverMRRMetric","RetrieverSimilarityMetric"],
+ "datasets": [{
+ "query": "what awel talked about",
+ "doc_name":"awel.md"
+ }]
+}'
+
+```
+
+
+
+
+
+```python
+from dbgpt.client import Client
+from dbgpt.client.evaluation import run_evaluation
+from dbgpt.serve.evaluate.api.schemas import EvaluateServeRequest
+
+DBGPT_API_KEY = "dbgpt"
+client = Client(api_key=DBGPT_API_KEY)
+request = EvaluateServeRequest(
+ # The scene type of the evaluation, e.g. support app, recall
+ scene_key="recall",
+ # e.g. app id(when scene_key is app), space id(when scene_key is recall)
+ scene_value="147",
+ context={"top_k": 5},
+ evaluate_metrics=[
+ "RetrieverHitRateMetric",
+ "RetrieverMRRMetric",
+ "RetrieverSimilarityMetric",
+ ],
+ datasets=[
+ {
+ "query": "what awel talked about",
+ "doc_name": "awel.md",
+ }
+ ],
+)
+data = await run_evaluation(client, request=request)
+
+```
+
+
+
+
+#### Request body
+Request Evaluation Object
+
+when scene_key is app, the request body should be like this:
+```json
+
+{
+ "scene_key": "app",
+ "scene_value":"2c76eea2-83b6-11ef-b482-acde48001122",
+ "context":{"top_k":5, "prompt":"942acd7e33b54ce28565f89f9b278044","model":"zhipu_proxyllm"},
+ "sys_code":"xx",
+ "evaluate_metrics":["AnswerRelevancyMetric"],
+ "datasets": [{
+ "query": "what awel talked about",
+ "doc_name":"awel.md"
+ }]
+}
+```
+
+when scene_key is recall, the request body should be like this:
+```json
+
+{
+ "scene_key": "recall",
+ "scene_value":"2c76eea2-83b6-11ef-b482-acde48001122",
+ "context":{"top_k":5, "prompt":"942acd7e33b54ce28565f89f9b278044","model":"zhipu_proxyllm"},
+ "evaluate_metrics":["RetrieverHitRateMetric", "RetrieverMRRMetric", "RetrieverSimilarityMetric"],
+ "datasets": [{
+ "query": "what awel talked about",
+ "doc_name":"awel.md"
+ }]
+}
+```
+
+#### Response body
+Return Evaluation Object List
+
+
+### The Evaluation Request Object
+
+________
+scene_key string Required
+
+The scene type of the evaluation, e.g. support app, recall
+
+--------
+scene_value string Required
+
+The scene value of the evaluation, e.g. app id(when scene_key is app), space id(when scene_key is recall)
+
+--------
+context object Required
+
+The context of the evaluation
+- top_k int Required
+- prompt string prompt code
+- model string llm model name
+
+--------
+evaluate_metrics array Required
+
+The evaluate metrics of the evaluation,
+e.g.
+- AnswerRelevancyMetric: the answer relevancy metric(when scene_key is app)
+- RetrieverHitRateMetric: Hit rate calculates the fraction of queries where the correct answer is found
+ within the top-k retrieved documents. In simpler terms, it’s about how often our
+ system gets it right within the top few guesses. (when scene_key is recall)
+- RetrieverMRRMetric: For each query, MRR evaluates the system’s accuracy by looking at the rank of the
+ highest-placed relevant document. Specifically, it’s the average of the reciprocals
+ of these ranks across all the queries. So, if the first relevant document is the
+ top result, the reciprocal rank is 1; if it’s second, the reciprocal rank is 1/2,
+ and so on. (when scene_key is recall)
+- RetrieverSimilarityMetric: Embedding Similarity Metric (when scene_key is recall)
+
+--------
+datasets array Required
+
+
+The datasets of the evaluation
+
+
+--------
+
+
+### The Evaluation Result
+
+________
+prediction string
+
+The prediction result
+________
+contexts string
+
+The contexts of RAG Retrieve chunk
+________
+score float
+
+The score of the prediction
+________
+passing bool
+
+The passing of the prediction
+________
+metric_name string
+
+The metric name of the evaluation
+________
+prediction_cost int
+
+The prediction cost of the evaluation
+________
+query string
+
+The query of the evaluation
+________
+raw_dataset object
+
+The raw dataset of the evaluation
+________
+feedback string
+
+The feedback of the llm evaluation
+________
diff --git a/docs/sidebars.js b/docs/sidebars.js
index 75751fbd7..a02c870e3 100755
--- a/docs/sidebars.js
+++ b/docs/sidebars.js
@@ -421,6 +421,9 @@ const sidebars = {
},{
type: 'doc',
id: 'api/datasource'
+ },{
+ type: 'doc',
+ id: 'api/evaluation'
},
],
link: {
diff --git a/examples/client/client_evaluation.py b/examples/client/client_evaluation.py
new file mode 100644
index 000000000..7ecd6aab8
--- /dev/null
+++ b/examples/client/client_evaluation.py
@@ -0,0 +1,91 @@
+"""Client: run evaluation example.
+
+This example demonstrates how to use the dbgpt client to evaluate with the rag recall
+and app answer.
+
+Example:
+ .. code-block:: python
+
+ DBGPT_API_KEY = "dbgpt"
+ client = Client(api_key=DBGPT_API_KEY)
+
+ # 1. evaluate with rag recall
+ request = EvaluateServeRequest(
+ # The scene type of the evaluation, e.g. support app, recall
+ scene_key="recall",
+ # e.g. app id(when scene_key is app), space id(when scene_key is recall)
+ scene_value="147",
+ context={"top_k": 5},
+ evaluate_metrics=[
+ "RetrieverHitRateMetric",
+ "RetrieverMRRMetric",
+ "RetrieverSimilarityMetric",
+ ],
+ datasets=[
+ {
+ "query": "what awel talked about",
+ "doc_name": "awel.md",
+ }
+ ],
+ )
+ # 2. evaluate with app answer
+ request = EvaluateServeRequest(
+ # The scene type of the evaluation, e.g. support app, recall
+ scene_key="app",
+ # e.g. app id(when scene_key is app), space id(when scene_key is recall)
+ scene_value="2c76eea2-83b6-11ef-b482-acde48001122",
+ "context"={
+ "top_k": 5,
+ "prompt": "942acd7e33b54ce28565f89f9b278044",
+ "model": "zhipu_proxyllm",
+ },
+ evaluate_metrics=[
+ "AnswerRelevancyMetric",
+ ],
+ datasets=[
+ {
+ "query": "what awel talked about",
+ "doc_name": "awel.md",
+ }
+ ],
+ )
+ data = await run_evaluation(client, request=request)
+ print(data)
+"""
+
+import asyncio
+
+from dbgpt.client import Client
+from dbgpt.client.evaluation import run_evaluation
+from dbgpt.serve.evaluate.api.schemas import EvaluateServeRequest
+
+
+async def main():
+ # initialize client
+ DBGPT_API_KEY = "dbgpt"
+ SPACE_ID = "147"
+ client = Client(api_key=DBGPT_API_KEY)
+ request = EvaluateServeRequest(
+ # The scene type of the evaluation, e.g. support app, recall
+ scene_key="recall",
+ # e.g. app id(when scene_key is app), space id(when scene_key is recall)
+ scene_value=SPACE_ID,
+ context={"top_k": 5},
+ evaluate_metrics=[
+ "RetrieverHitRateMetric",
+ "RetrieverMRRMetric",
+ "RetrieverSimilarityMetric",
+ ],
+ datasets=[
+ {
+ "query": "what awel talked about",
+ "doc_name": "awel.md",
+ }
+ ],
+ )
+ data = await run_evaluation(client, request=request)
+ print(data)
+
+
+if __name__ == "__main__":
+ asyncio.run(main())