forked from shader-slang/slang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
499 lines (435 loc) · 21 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
// main.cpp
// This file provides the application code for the `hello-world` example.
//
// This example uses Vulkan to run a simple compute shader written in Slang.
// The goal is to demonstrate how to use the Slang API to cross compile
// shader code.
//
#include "slang.h"
#include "slang-com-ptr.h"
#include "vulkan-api.h"
#include "examples/example-base/example-base.h"
#include "examples/example-base/test-base.h"
#include "source/core/slang-string-util.h"
using Slang::ComPtr;
static const ExampleResources resourceBase("hello-world");
struct HelloWorldExample : public TestBase
{
// The Vulkan functions pointers result from loading the vulkan library.
VulkanAPI vkAPI;
// Vulkan objects used in this example.
VkQueue queue;
VkCommandPool commandPool = VK_NULL_HANDLE;
// Input and output buffers.
VkBuffer inOutBuffers[3] = {};
VkDeviceMemory bufferMemories[3] = {};
const size_t inputElementCount = 16;
const size_t bufferSize = sizeof(float) * inputElementCount;
// We use a staging buffer allocated on host-visible memory to
// upload/download data from GPU.
VkBuffer stagingBuffer = VK_NULL_HANDLE;
VkDeviceMemory stagingMemory = VK_NULL_HANDLE;
VkDescriptorSetLayout descriptorSetLayout = VK_NULL_HANDLE;
VkPipelineLayout pipelineLayout = VK_NULL_HANDLE;
VkPipeline pipeline = VK_NULL_HANDLE;
// Initializes the Vulkan instance and device.
int initVulkanInstanceAndDevice();
// This function contains the most interesting part of this example.
// It loads the `hello-world.slang` shader and compile it using the Slang API
// into a SPIRV module, then create a Vulkan pipeline from the compiled shader.
int createComputePipelineFromShader();
// Creates the input and output buffers.
int createInOutBuffers();
// Sets up descriptor set bindings and dispatches the compute task.
int dispatchCompute();
// Reads back and prints the result of the compute task.
int printComputeResults();
// Main logic of this example.
int run();
~HelloWorldExample();
};
int main(int argc, char* argv[])
{
initDebugCallback();
HelloWorldExample example;
example.parseOption(argc, argv);
return example.run();
}
/************************************************************/
/* HelloWorldExample Implementation */
/************************************************************/
int HelloWorldExample::run()
{
RETURN_ON_FAIL(initVulkanInstanceAndDevice());
RETURN_ON_FAIL(createComputePipelineFromShader());
RETURN_ON_FAIL(createInOutBuffers());
RETURN_ON_FAIL(dispatchCompute());
RETURN_ON_FAIL(printComputeResults());
return 0;
}
int HelloWorldExample::initVulkanInstanceAndDevice()
{
if (initializeVulkanDevice(vkAPI) != 0)
{
printf("Failed to load Vulkan.\n");
return -1;
}
VkCommandPoolCreateInfo poolCreateInfo = {};
poolCreateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolCreateInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
poolCreateInfo.queueFamilyIndex = vkAPI.queueFamilyIndex;
RETURN_ON_FAIL(vkAPI.vkCreateCommandPool(
vkAPI.device, &poolCreateInfo, nullptr, &commandPool));
vkAPI.vkGetDeviceQueue(vkAPI.device, vkAPI.queueFamilyIndex, 0, &queue);
return 0;
}
int HelloWorldExample::createComputePipelineFromShader()
{
// First we need to create slang global session with work with the Slang API.
ComPtr<slang::IGlobalSession> slangGlobalSession;
RETURN_ON_FAIL(slang::createGlobalSession(slangGlobalSession.writeRef()));
// Next we create a compilation session to generate SPIRV code from Slang source.
slang::SessionDesc sessionDesc = {};
slang::TargetDesc targetDesc = {};
targetDesc.format = SLANG_SPIRV;
targetDesc.profile = slangGlobalSession->findProfile("spirv_1_5");
targetDesc.flags = SLANG_TARGET_FLAG_GENERATE_SPIRV_DIRECTLY;
sessionDesc.targets = &targetDesc;
sessionDesc.targetCount = 1;
ComPtr<slang::ISession> session;
RETURN_ON_FAIL(slangGlobalSession->createSession(sessionDesc, session.writeRef()));
// Once the session has been obtained, we can start loading code into it.
//
// The simplest way to load code is by calling `loadModule` with the name of a Slang
// module. A call to `loadModule("hello-world")` will behave more or less as if you
// wrote:
//
// import hello_world;
//
// In a Slang shader file. The compiler will use its search paths to try to locate
// `hello-world.slang`, then compile and load that file. If a matching module had
// already been loaded previously, that would be used directly.
slang::IModule* slangModule = nullptr;
{
ComPtr<slang::IBlob> diagnosticBlob;
Slang::String path = resourceBase.resolveResource("hello-world.slang");
slangModule = session->loadModule(path.getBuffer(), diagnosticBlob.writeRef());
diagnoseIfNeeded(diagnosticBlob);
if (!slangModule)
return -1;
}
// Loading the `hello-world` module will compile and check all the shader code in it,
// including the shader entry points we want to use. Now that the module is loaded
// we can look up those entry points by name.
//
// Note: If you are using this `loadModule` approach to load your shader code it is
// important to tag your entry point functions with the `[shader("...")]` attribute
// (e.g., `[shader("compute")] void computeMain(...)`). Without that information there
// is no umambiguous way for the compiler to know which functions represent entry
// points when it parses your code via `loadModule()`.
//
ComPtr<slang::IEntryPoint> entryPoint;
slangModule->findEntryPointByName("computeMain", entryPoint.writeRef());
// At this point we have a few different Slang API objects that represent
// pieces of our code: `module`, `vertexEntryPoint`, and `fragmentEntryPoint`.
//
// A single Slang module could contain many different entry points (e.g.,
// four vertex entry points, three fragment entry points, and two compute
// shaders), and before we try to generate output code for our target API
// we need to identify which entry points we plan to use together.
//
// Modules and entry points are both examples of *component types* in the
// Slang API. The API also provides a way to build a *composite* out of
// other pieces, and that is what we are going to do with our module
// and entry points.
//
Slang::List<slang::IComponentType*> componentTypes;
componentTypes.add(slangModule);
componentTypes.add(entryPoint);
// Actually creating the composite component type is a single operation
// on the Slang session, but the operation could potentially fail if
// something about the composite was invalid (e.g., you are trying to
// combine multiple copies of the same module), so we need to deal
// with the possibility of diagnostic output.
//
ComPtr<slang::IComponentType> composedProgram;
{
ComPtr<slang::IBlob> diagnosticsBlob;
SlangResult result = session->createCompositeComponentType(
componentTypes.getBuffer(),
componentTypes.getCount(),
composedProgram.writeRef(),
diagnosticsBlob.writeRef());
diagnoseIfNeeded(diagnosticsBlob);
RETURN_ON_FAIL(result);
}
// Now we can call `composedProgram->getEntryPointCode()` to retrieve the
// compiled SPIRV code that we will use to create a vulkan compute pipeline.
// This will trigger the final Slang compilation and spirv code generation.
ComPtr<slang::IBlob> spirvCode;
{
ComPtr<slang::IBlob> diagnosticsBlob;
SlangResult result = composedProgram->getEntryPointCode(
0, 0, spirvCode.writeRef(), diagnosticsBlob.writeRef());
diagnoseIfNeeded(diagnosticsBlob);
RETURN_ON_FAIL(result);
if (isTestMode())
{
printEntrypointHashes(1, 1, composedProgram);
}
}
// The following steps are all Vulkan API calls to create a pipeline.
// First we need to create a descriptor set layout and a pipeline layout.
// In this example, the pipeline layout is simple: we have a single descriptor
// set with three buffer descriptors for our input/output storage buffers.
// General applications typically has much more complicated pipeline layouts,
// and should consider using Slang's reflection API to learn about the shader
// parameter layout of a shader program. However, Slang's reflection API is
// out of scope of this example.
VkDescriptorSetLayoutCreateInfo descSetLayoutCreateInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO};
descSetLayoutCreateInfo.bindingCount = 3;
VkDescriptorSetLayoutBinding bindings[3];
for (int i = 0; i < 3; i++)
{
auto& binding = bindings[i];
binding.binding = i;
binding.descriptorCount = 1;
binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = nullptr;
}
descSetLayoutCreateInfo.pBindings = bindings;
RETURN_ON_FAIL(vkAPI.vkCreateDescriptorSetLayout(
vkAPI.device, &descSetLayoutCreateInfo, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
pipelineLayoutCreateInfo.setLayoutCount = 1;
pipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
RETURN_ON_FAIL(vkAPI.vkCreatePipelineLayout(
vkAPI.device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Next we create a shader module from the compiled SPIRV code.
VkShaderModuleCreateInfo shaderCreateInfo = {VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO};
shaderCreateInfo.codeSize = spirvCode->getBufferSize();
shaderCreateInfo.pCode = static_cast<const uint32_t*>(spirvCode->getBufferPointer());
VkShaderModule vkShaderModule;
RETURN_ON_FAIL(
vkAPI.vkCreateShaderModule(vkAPI.device, &shaderCreateInfo, nullptr, &vkShaderModule));
// Now we have all we need to create a compute pipeline.
VkComputePipelineCreateInfo pipelineCreateInfo = {
VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO};
pipelineCreateInfo.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
pipelineCreateInfo.stage.module = vkShaderModule;
pipelineCreateInfo.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT;
pipelineCreateInfo.stage.pName = "main";
pipelineCreateInfo.layout = pipelineLayout;
RETURN_ON_FAIL(vkAPI.vkCreateComputePipelines(
vkAPI.device, VK_NULL_HANDLE, 1, &pipelineCreateInfo, nullptr, &pipeline));
// We can destroy shader module now since it will no longer be used.
vkAPI.vkDestroyShaderModule(vkAPI.device, vkShaderModule, nullptr);
return 0;
}
int HelloWorldExample::createInOutBuffers()
{
// Create input and output buffers that resides in device-local memory.
for (int i = 0; i < 3; i++)
{
VkBufferCreateInfo bufferCreateInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT;
RETURN_ON_FAIL(
vkAPI.vkCreateBuffer(vkAPI.device, &bufferCreateInfo, nullptr, &inOutBuffers[i]));
VkMemoryRequirements memoryReqs = {};
vkAPI.vkGetBufferMemoryRequirements(vkAPI.device, inOutBuffers[i], &memoryReqs);
int memoryTypeIndex = vkAPI.findMemoryTypeIndex(
memoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
assert(memoryTypeIndex >= 0);
VkMemoryPropertyFlags actualMemoryProperites =
vkAPI.deviceMemoryProperties.memoryTypes[memoryTypeIndex].propertyFlags;
VkMemoryAllocateInfo allocateInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO};
allocateInfo.allocationSize = memoryReqs.size;
allocateInfo.memoryTypeIndex = memoryTypeIndex;
RETURN_ON_FAIL(
vkAPI.vkAllocateMemory(vkAPI.device, &allocateInfo, nullptr, &bufferMemories[i]));
RETURN_ON_FAIL(
vkAPI.vkBindBufferMemory(vkAPI.device, inOutBuffers[i], bufferMemories[i], 0));
}
// Create the device memory and buffer object used for reading/writing
// data to/from the device local buffers.
{
VkBufferCreateInfo bufferCreateInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage =
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
RETURN_ON_FAIL(
vkAPI.vkCreateBuffer(vkAPI.device, &bufferCreateInfo, nullptr, &stagingBuffer));
VkMemoryRequirements memoryReqs = {};
vkAPI.vkGetBufferMemoryRequirements(vkAPI.device, stagingBuffer, &memoryReqs);
int memoryTypeIndex = vkAPI.findMemoryTypeIndex(
memoryReqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
assert(memoryTypeIndex >= 0);
VkMemoryPropertyFlags actualMemoryProperites =
vkAPI.deviceMemoryProperties.memoryTypes[memoryTypeIndex].propertyFlags;
VkMemoryAllocateInfo allocateInfo = {VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO};
allocateInfo.allocationSize = memoryReqs.size;
allocateInfo.memoryTypeIndex = memoryTypeIndex;
RETURN_ON_FAIL(
vkAPI.vkAllocateMemory(vkAPI.device, &allocateInfo, nullptr, &stagingMemory));
RETURN_ON_FAIL(vkAPI.vkBindBufferMemory(vkAPI.device, stagingBuffer, stagingMemory, 0));
}
// Map staging buffer and writes in the initial input content.
float* stagingBufferData = nullptr;
vkAPI.vkMapMemory(vkAPI.device, stagingMemory, 0, bufferSize, 0, (void**)&stagingBufferData);
if (!stagingBufferData)
return -1;
for (size_t i = 0; i < inputElementCount; i++)
stagingBufferData[i] = static_cast<float>(i);
vkAPI.vkUnmapMemory(vkAPI.device, stagingMemory);
// Create a temporary command buffer for recording commands that writes initial
// data into the input buffers.
VkCommandBuffer uploadCommandBuffer;
VkCommandBufferAllocateInfo commandBufferAllocInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO};
commandBufferAllocInfo.commandBufferCount = 1;
commandBufferAllocInfo.commandPool = commandPool;
commandBufferAllocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
RETURN_ON_FAIL(vkAPI.vkAllocateCommandBuffers(vkAPI.device, &commandBufferAllocInfo, &uploadCommandBuffer));
VkCommandBufferBeginInfo beginInfo = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO};
vkAPI.vkBeginCommandBuffer(uploadCommandBuffer, &beginInfo);
VkBufferCopy bufferCopy = {};
bufferCopy.size = bufferSize;
vkAPI.vkCmdCopyBuffer(uploadCommandBuffer, stagingBuffer, inOutBuffers[0], 1, &bufferCopy);
vkAPI.vkCmdCopyBuffer(uploadCommandBuffer, stagingBuffer, inOutBuffers[1], 1, &bufferCopy);
vkAPI.vkEndCommandBuffer(uploadCommandBuffer);
VkSubmitInfo submitInfo = {VK_STRUCTURE_TYPE_SUBMIT_INFO};
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &uploadCommandBuffer;
vkAPI.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
vkAPI.vkQueueWaitIdle(queue);
vkAPI.vkFreeCommandBuffers(vkAPI.device, commandPool, 1, &uploadCommandBuffer);
return 0;
}
int HelloWorldExample::dispatchCompute()
{
// Create a descriptor pool.
VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = {
VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO};
VkDescriptorPoolSize poolSizes[] = {
VkDescriptorPoolSize{VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 16}};
descriptorPoolCreateInfo.maxSets = 4;
descriptorPoolCreateInfo.poolSizeCount = sizeof(poolSizes) / sizeof(VkDescriptorPoolSize);
descriptorPoolCreateInfo.pPoolSizes = poolSizes;
descriptorPoolCreateInfo.flags = 0;
VkDescriptorPool descriptorPool = VK_NULL_HANDLE;
RETURN_ON_FAIL(vkAPI.vkCreateDescriptorPool(
vkAPI.device, &descriptorPoolCreateInfo, nullptr, &descriptorPool));
// Allocate descriptor set.
VkDescriptorSetAllocateInfo descSetAllocInfo = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO};
descSetAllocInfo.descriptorPool = descriptorPool;
descSetAllocInfo.descriptorSetCount = 1;
descSetAllocInfo.pSetLayouts = &descriptorSetLayout;
VkDescriptorSet descriptorSet = VK_NULL_HANDLE;
RETURN_ON_FAIL(vkAPI.vkAllocateDescriptorSets(vkAPI.device, &descSetAllocInfo, &descriptorSet));
// Write descriptor set.
VkWriteDescriptorSet descriptorSetWrites[3] = {};
VkDescriptorBufferInfo bufferInfo[3];
for (int i = 0; i < 3; i++)
{
bufferInfo[i].buffer = inOutBuffers[i];
bufferInfo[i].offset = 0;
bufferInfo[i].range = bufferSize;
descriptorSetWrites[i].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorSetWrites[i].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
descriptorSetWrites[i].descriptorCount = 1;
descriptorSetWrites[i].dstBinding = i;
descriptorSetWrites[i].dstSet = descriptorSet;
descriptorSetWrites[i].pBufferInfo = &bufferInfo[i];
}
vkAPI.vkUpdateDescriptorSets(vkAPI.device, 3, descriptorSetWrites, 0, nullptr);
// Allocate command buffer and record dispatch commands.
VkCommandBuffer commandBuffer;
VkCommandBufferAllocateInfo commandBufferAllocInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO};
commandBufferAllocInfo.commandBufferCount = 1;
commandBufferAllocInfo.commandPool = commandPool;
commandBufferAllocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
RETURN_ON_FAIL(
vkAPI.vkAllocateCommandBuffers(vkAPI.device, &commandBufferAllocInfo, &commandBuffer));
VkCommandBufferBeginInfo beginInfo = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO};
vkAPI.vkBeginCommandBuffer(commandBuffer, &beginInfo);
vkAPI.vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipeline);
vkAPI.vkCmdBindDescriptorSets(
commandBuffer,
VK_PIPELINE_BIND_POINT_COMPUTE,
pipelineLayout,
0,
1,
&descriptorSet,
0,
nullptr);
vkAPI.vkCmdDispatch(commandBuffer, (uint32_t)inputElementCount, 1, 1);
vkAPI.vkEndCommandBuffer(commandBuffer);
// Submit command buffer and wait.
VkSubmitInfo submitInfo = {VK_STRUCTURE_TYPE_SUBMIT_INFO};
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkAPI.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
vkAPI.vkQueueWaitIdle(queue);
vkAPI.vkFreeCommandBuffers(vkAPI.device, commandPool, 1, &commandBuffer);
// Clean up.
vkAPI.vkDestroyDescriptorPool(vkAPI.device, descriptorPool, nullptr);
return 0;
}
int HelloWorldExample::printComputeResults()
{
// Allocate command buffer to read back data.
VkCommandBuffer commandBuffer;
VkCommandBufferAllocateInfo commandBufferAllocInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO};
commandBufferAllocInfo.commandBufferCount = 1;
commandBufferAllocInfo.commandPool = commandPool;
commandBufferAllocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
RETURN_ON_FAIL(
vkAPI.vkAllocateCommandBuffers(vkAPI.device, &commandBufferAllocInfo, &commandBuffer));
// Record commands to copy output buffer into staging buffer.
VkCommandBufferBeginInfo beginInfo = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO};
vkAPI.vkBeginCommandBuffer(commandBuffer, &beginInfo);
VkBufferCopy bufferCopy = {};
bufferCopy.size = bufferSize;
vkAPI.vkCmdCopyBuffer(commandBuffer, inOutBuffers[2], stagingBuffer, 1, &bufferCopy);
vkAPI.vkEndCommandBuffer(commandBuffer);
// Execute command buffer and wait.
VkSubmitInfo submitInfo = {VK_STRUCTURE_TYPE_SUBMIT_INFO};
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkAPI.vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
vkAPI.vkQueueWaitIdle(queue);
vkAPI.vkFreeCommandBuffers(vkAPI.device, commandPool, 1, &commandBuffer);
// Map and read back staging buffer.
float* stagingBufferData = nullptr;
vkAPI.vkMapMemory(vkAPI.device, stagingMemory, 0, bufferSize, 0, (void**)&stagingBufferData);
if (!stagingBufferData)
return -1;
for (size_t i = 0; i < inputElementCount; i++)
{
printf("%f\n", stagingBufferData[i]);
}
return 0;
}
HelloWorldExample::~HelloWorldExample()
{
vkAPI.vkDestroyPipeline(vkAPI.device, pipeline, nullptr);
for (int i = 0; i < 3; i++)
{
vkAPI.vkDestroyBuffer(vkAPI.device, inOutBuffers[i], nullptr);
vkAPI.vkFreeMemory(vkAPI.device, bufferMemories[i], nullptr);
}
vkAPI.vkDestroyBuffer(vkAPI.device, stagingBuffer, nullptr);
vkAPI.vkFreeMemory(vkAPI.device, stagingMemory, nullptr);
vkAPI.vkDestroyPipelineLayout(vkAPI.device, pipelineLayout, nullptr);
vkAPI.vkDestroyDescriptorSetLayout(vkAPI.device, descriptorSetLayout, nullptr);
vkAPI.vkDestroyCommandPool(vkAPI.device, commandPool, nullptr);
}