forked from firojalam/emnlp2017-bilstm-cnn-crf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_NER_German.py
70 lines (53 loc) · 2.52 KB
/
Train_NER_German.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# This script trains the BiLSTM-CNN-CRF architecture for NER in German using
# the GermEval 2014 dataset (https://sites.google.com/site/germeval2014ner/).
# The code use the embeddings by Reimers et al. (https://www.ukp.tu-darmstadt.de/research/ukp-in-challenges/germeval-2014/)
from __future__ import print_function
import os
import logging
import sys
from neuralnets.BiLSTM import BiLSTM
from util.preprocessing import perpareDataset, loadDatasetPickle
from keras import backend as K
# :: Change into the working dir of the script ::
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
# :: Logging level ::
loggingLevel = logging.INFO
logger = logging.getLogger()
logger.setLevel(loggingLevel)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(loggingLevel)
formatter = logging.Formatter('%(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
######################################################
#
# Data preprocessing
#
######################################################
datasets = {
'GermEval': #Name of the dataset
{'columns': {1:'tokens', 2:'NER_BIO'}, #CoNLL format for the input data. Column 1 contains tokens, column 2 contains NER information using BIO encoding
'label': 'NER_BIO', #Which column we like to predict
'evaluate': True, #Should we evaluate on this task? Set true always for single task setups
'commentSymbol': None} #Lines in the input data starting with this string will be skipped. Can be used to skip comments
}
# :: Path on your computer to the word embeddings. Embeddings by Reimers et al. will be downloaded automatically ::
embeddingsPath = 'reimers_german_embeddings.gz'
# :: Prepares the dataset to be used with the LSTM-network. Creates and stores cPickle files in the pkl/ folder ::
pickleFile = perpareDataset(embeddingsPath, datasets)
######################################################
#
# The training of the network starts here
#
######################################################
#Load the embeddings and the dataset
embeddings, mappings, data = loadDatasetPickle(pickleFile)
# Some network hyperparameters
params = {'classifier': ['CRF'], 'LSTM-Size': [100, 100], 'dropout': (0.25, 0.25), 'charEmbeddings': 'CNN', 'maxCharLength': 50}
model = BiLSTM(params)
model.setMappings(mappings, embeddings)
model.setDataset(datasets, data)
model.modelSavePath = "models/[ModelName]_[DevScore]_[TestScore]_[Epoch].h5"
model.fit(epochs=25)