forked from firojalam/emnlp2017-bilstm-cnn-crf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_MultiTask_Different_Levels.py
79 lines (60 loc) · 2.55 KB
/
Train_MultiTask_Different_Levels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# This file contain an example how to perform multi-task learning on different levels.
# In the datasets variable, we specify two datasets: POS-tagging (unidep_pos) and conll2000_chunking.
# We pass a special parameter to the network (customClassifier), that allows that task are supervised at different levels.
# For the POS task, we use one shared LSTM layer followed by a softmax classifier. However, the chunking
# task uses the shared LSTM layer, then a task specific LSTM layer with 50 recurrent units, and then a CRF classifier.
from __future__ import print_function
import os
import logging
import sys
from neuralnets.BiLSTM import BiLSTM
from util.preprocessing import perpareDataset, loadDatasetPickle
from keras import backend as K
# :: Change into the working dir of the script ::
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
# :: Logging level ::
loggingLevel = logging.INFO
logger = logging.getLogger()
logger.setLevel(loggingLevel)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(loggingLevel)
formatter = logging.Formatter('%(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
######################################################
#
# Data preprocessing
#
######################################################
datasets = {
'unidep_pos':
{'columns': {1:'tokens', 3:'POS'},
'label': 'POS',
'evaluate': True,
'commentSymbol': None},
'conll2000_chunking':
{'columns': {0:'tokens', 2:'chunk_BIO'},
'label': 'chunk_BIO',
'evaluate': True,
'commentSymbol': None},
}
embeddingsPath = 'komninos_english_embeddings.gz' #Word embeddings by Levy et al: https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
# :: Prepares the dataset to be used with the LSTM-network. Creates and stores cPickle files in the pkl/ folder ::
pickleFile = perpareDataset(embeddingsPath, datasets)
######################################################
#
# The training of the network starts here
#
######################################################
#Load the embeddings and the dataset
embeddings, mappings, data = loadDatasetPickle(pickleFile)
# Some network hyperparameters
params = {'classifier': ['CRF'], 'LSTM-Size': [100], 'dropout': (0.25, 0.25),
'customClassifier': {'unidep_pos': ['Softmax'], 'conll2000_chunking': [('LSTM', 50), 'CRF']}}
model = BiLSTM(params)
model.setMappings(mappings, embeddings)
model.setDataset(datasets, data)
model.modelSavePath = "models/[ModelName]_[DevScore]_[TestScore]_[Epoch].h5"
model.fit(epochs=25)