-
Notifications
You must be signed in to change notification settings - Fork 0
/
draw_model.py
235 lines (187 loc) · 8.27 KB
/
draw_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
import torch.nn as nn
from utility import *
import torch.functional as F
import torch.optim as optim
import time
import torch
from matplotlib import pyplot as plt
class DrawModel(nn.Module):
def __init__(self,T,A,B,z_size,N,dec_size,enc_size, train_loader):
super(DrawModel,self).__init__()
self.T = T
self.A = A
self.B = B
self.z_size = z_size
self.N = N
self.dec_size = dec_size
self.enc_size = enc_size
self.cs = [0] * T
self.cs_d_ = [0] * T
self.cs_rec_ = [0] * T
self.cs_decoder = [0] * T
self.logsigmas,self.sigmas,self.mus = [0] * T,[0] * T,[0] * T
self.encoder = nn.LSTMCell(2 * N * N + dec_size, enc_size)
self.mu_linear = nn.Linear(dec_size, z_size)
self.sigma_linear = nn.Linear(dec_size, z_size)
self.decoder = nn.LSTMCell(z_size, dec_size) #nn.LSTMCell(2 * 5 + dec_size, dec_size)
self.dec_linear = nn.Linear(dec_size, 5)
self.enc_w_linear = nn.Linear(dec_size, N*N)
self.generator = nn.Sequential(
nn.Linear(dec_size, A*B),
nn.ReLU())
self.generator = self.generator.cuda()
self.train_loader = train_loader
self.sigmoid = nn.Sigmoid()
def normalSample(self):
return Variable(torch.randn(self.batch_size,self.z_size))
# correct
def compute_mu(self,g,rng,delta):
rng_t,delta_t = align(rng,delta)
tmp = (rng_t - self.N / 2 - 0.5) * delta_t
tmp_t,g_t = align(tmp,g)
mu = tmp_t + g_t
return mu
# correct
def filterbank(self,gx,gy,sigma2,delta):
rng = Variable(torch.arange(0,self.N).view(1,-1))
mu_x = self.compute_mu(gx,rng,delta)
mu_y = self.compute_mu(gy,rng,delta)
a = Variable(torch.arange(0,self.A).view(1,1,-1))
b = Variable(torch.arange(0,self.B).view(1,1,-1))
mu_x = mu_x.view(-1,self.N,1)
mu_y = mu_y.view(-1,self.N,1)
sigma2 = sigma2.view(-1,1,1)
Fx = self.filterbank_matrices(a,mu_x,sigma2)
Fy = self.filterbank_matrices(b,mu_y,sigma2)
return Fx,Fy
def forward(self,x):
self.batch_size = x.size()[0]
h_dec_prev = Variable(torch.zeros(self.batch_size,self.dec_size))
h_enc_prev = Variable(torch.zeros(self.batch_size, self.enc_size))
ram = Variable(torch.zeros(self.batch_size, self.enc_size), requires_grad=False)
h_enc = Variable(torch.zeros(self.batch_size, self.enc_size))
h_dec = Variable(torch.zeros(self.batch_size, self.enc_size))
enc_state = Variable(torch.zeros(self.batch_size,self.enc_size))
dec_state = Variable(torch.zeros(self.batch_size, self.dec_size))
loss = 0
Lx = 0
La = 0
Lb = 0
criterion = nn.MSELoss()
criterion_1 = nn.L1Loss()
for t in range(self.T):
###################################################
c_prev = Variable(torch.zeros(self.batch_size,self.A * self.B)) if t == 0 else self.cs[t-1]
c_prev_decoder = Variable(torch.zeros(self.batch_size,self.A * self.B)) if t == 0 else self.cs_decoder[t-1]
x_hat = x - self.sigmoid(c_prev)
r_t = self.read(x,x_hat,h_enc_prev)
h_enc_prev, enc_state = self.encoder(torch.cat((r_t,h_enc_prev),1), (h_enc,enc_state))
self.cs[t] = c_prev + self.write(h_enc_prev)
ram = c_prev
ram = ram.detach()
###################################################
s_t, self.mus[t], self.logsigmas[t], self.sigmas[t] = self.sampleQ(h_enc_prev)
###################################################
h_dec, dec_state = self.decoder(s_t, (h_dec_prev, dec_state))
x_guess = self.generator(h_dec)
###################################################
# We are giving a lightweight KNN
# x_pseudo = self.KNN(x_guess)
# We used the KNN based retrieval in our final implementation,
#Howvever, in this implementation we are using ground truth itself
x_pseudo = x
if t % 3 == 0:
Lx += criterion(x_guess, x_pseudo) * self.A * self.B
Lb += criterion(x_guess, ram)
self.cs_rec_[t] = x_guess # Showing the reconstructions ... !
h_dec_prev = h_dec
#La = criterion_1(x_guess, ram) * self.A * self.B
imgs_gen = []
for img_gen in self.cs_rec_:
imgs_gen.append(self.sigmoid(img_gen).cpu().data.numpy())
return Lx, La, Lb, imgs_gen, self.cs_rec_
# This is not available
def KNN(self, x_guess): # We will give the full version in our official release after acceptance
dist = F.cosine_similarity(self.train_loader, x_guess)
index_sorted = torch.argsort(dist)
top_1 = index_sorted[:1]
return x_pseudo
def loss(self, x):
Lx, La, Lb, imgs_rec, self.cs_rec_ = self.forward(x)
criterion = nn.L1Loss()
x_encoder = self.sigmoid(self.cs[-1])
x_decoder = self.sigmoid(self.cs_rec_[-1]) #self.cs_decoder[-1])
Le = criterion(x_encoder, x) * self.A * self.B
Lf = criterion(x_decoder, x)
Lz = 0
kl_terms = [0] * T
for t in range(self.T):
mu_2 = self.mus[t] * self.mus[t]
sigma_2 = self.sigmas[t] * self.sigmas[t]
logsigma = self.logsigmas[t]
kl_terms[t] = 0.5 * torch.sum(mu_2+sigma_2-2 * logsigma,1) - self.T * 0.5
Lz += kl_terms[t]
Lz = torch.mean(Lz)
loss = La + Lb + Lz + Lx + Le + Lf
return loss, imgs_rec
# correct
def filterbank_matrices(self,a,mu_x,sigma2,epsilon=1e-9):
t_a,t_mu_x = align(a,mu_x)
temp = t_a - t_mu_x
temp,t_sigma = align(temp,sigma2)
temp = temp / (t_sigma * 2)
F = torch.exp(-torch.pow(temp,2))
F = F / (F.sum(2,True).expand_as(F) + epsilon)
return F
def attn_window(self,h_enc):
params = self.dec_linear(h_enc)
gx_,gy_,log_sigma_2,log_delta,log_gamma = params.split(1,1)
gx = (self.A + 1) / 2 * (gx_ + 1)
gy = (self.B + 1) / 2 * (gy_ + 1)
delta = (max(self.A,self.B) - 1) / (self.N - 1) * torch.exp(log_delta)
sigma2 = torch.exp(log_sigma_2)
gamma = torch.exp(log_gamma)
return self.filterbank(gx,gy,sigma2,delta),gamma
# correct
def read(self,x,x_hat,h_enc_prev):
(Fx,Fy),gamma = self.attn_window(h_enc_prev)
def filter_img(img,Fx,Fy,gamma,A,B,N):
Fxt = Fx.transpose(2,1)
img = img.view(-1,B,A)
glimpse = Fy.bmm(img.bmm(Fxt))
glimpse = glimpse.view(-1,N*N)
return glimpse * gamma.view(-1,1).expand_as(glimpse)
x = filter_img(x,Fx,Fy,gamma,self.A,self.B,self.N)
x_hat = filter_img(x_hat,Fx,Fy,gamma,self.A,self.B,self.N)
return torch.cat((x,x_hat),1)
# correct
def write(self,h_enc=0):
w = self.enc_w_linear(h_enc)
w = w.view(self.batch_size, self.N,self.N)
(Fx,Fy),gamma = self.attn_window(h_enc)
Fyt = Fy.transpose(2,1)
wr = Fyt.bmm(w.bmm(Fx))
wr = wr.view(self.batch_size,self.A*self.B)
return wr / gamma.view(-1,1).expand_as(wr)
def sampleQ(self,h_enc):
e = self.normalSample()
mu = self.mu_linear(h_enc)
log_sigma = self.sigma_linear(h_enc)
sigma = torch.exp(log_sigma)
return mu + sigma * e , mu , log_sigma, sigma
def generate(self,batch_size=64):
self.batch_size = batch_size
h_dec_prev = Variable(torch.zeros(self.batch_size,self.dec_size),volatile = True)
dec_state = Variable(torch.zeros(self.batch_size, self.dec_size),volatile = True)
for t in range(self.T):
c_prev_decoder = Variable(torch.zeros(self.batch_size, self.A * self.B)) if t == 0 else self.cs_decoder[t - 1]
s_t = self.normalSample()
h_dec, dec_state = self.decoder(s_t, (h_dec_prev, dec_state))
x_guess = self.sigmoid(self.generator(h_dec))
self.cs_d_[t] = x_guess
h_dec_prev = h_dec
imgs = []
for img in self.cs_d_:
imgs.append(self.sigmoid(img).cpu().data.numpy())
return imgs