-
Notifications
You must be signed in to change notification settings - Fork 16
/
optim_PhC_ppo.py
424 lines (331 loc) · 13.4 KB
/
optim_PhC_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
'''3rd version of NN/FDTD alternating approach, incorporating the FDTD env instead of vanilla carpole.
This version uses PPO, and future versions will switch to rainbow DQN. April 12nd 2022
Authors: Renjie Li, Ceyao Zhang @CUHKSZ '''
import argparse
from email import policy
import string
import gym
import gym
from gym import spaces
from gym.envs.registration import register
from gym.utils import seeding
import numpy as np
from typing import Optional, Union
import ray
from ray import tune
from ray.rllib.evaluation import RolloutWorker
from ray.rllib.utils.metrics.learner_info import LEARNER_INFO, LEARNER_STATS_KEY
#from ray.rllib.evaluation.metrics import collect_metrics
#from ray.tune.logger import pretty_print
from ray.tune.registry import register_env
import ray.rllib.agents.ppo as ppo
from ray.rllib.agents.ppo.ppo_torch_policy import PPOTorchPolicy
#from ray.rllib.agents.pg.pg_tf_policy import PGTFPolicy
#from ray.rllib.agents.ppo.ppo import PPOConfig
from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID, SampleBatch
#from ray.tune.utils.placement_groups import PlacementGroupFactory
from ray.rllib.utils.sgd import do_minibatch_sgd
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
#import torchvision.transforms as T
from collections import namedtuple, deque
from code4.envs.fdtd_env import FdtdEnv
#from code2.optim_PhC import Net
#print(torch.cuda.is_available())
#using cuda causes errors
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = torch.device('cpu')
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", action="store_true")
parser.add_argument("--num-iters", type=int, default=4)
parser.add_argument("--num-workers", type=int, default=1)
parser.add_argument("--num-cpus-per-worker", type=int, default=5)
parser.add_argument("--framework", type=str, default='torch')
parser.add_argument("--rollfraglen", type=int, default=64)
parser.add_argument("--horizon", type=int, default=256)
parser.add_argument("--minibatch", type=int, default=32)
parser.add_argument("--num-epochs", type=int, default=20)
#parser.add_argument("--rollfraglen", type=int, default=2)
torch.set_printoptions(precision=10)
#obs space and action space dims
n_state = 7
n_actions = 14
# create a class for the NN approximating FDTD
#input: next obs, output: reward
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(n_state, 120) # just FC, no CNN
self.fc2 = nn.Linear(120, 80)
self.fc3 = nn.Linear(80, 50)
self.fc4 = nn.Linear(50, 1)
def forward(self, x):
x = x.to(device)
# print(x.shape)
x = x.view(-1, n_state)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
#register the gym env
register(
id='Fdtd_NB-v0',
entry_point='code4.envs:FdtdEnv',
max_episode_steps=500,
reward_threshold=1000.0,
)
#modify the FDTD env to incorporate NN
class FdtdEnv2(gym.Env):
"""
Makes changes to the physical parameters of photonic crystal structures to maximize the Q factor.
Invokes an FDTD session to take in (dx, dy, dr) and compute the resulting Q factor.
"""
def __init__(self, NN):
# limits for net geometrical changes (states)
self.maxDeltaXT1 = 5
self.maxDeltaXT2 = 5
self.maxDeltaXT3 = 5
self.maxDeltaXT4 = 5
self.maxDeltaXT5 = 5
self.maxDeltaXT6 = 5
self.maxDeltaR = 10
self.NN= NN
# self.maxCav = 5
# actions to take (i.e. alter the geometrical parameters)
# self.delta = 0.5e-9
# self.DR = 0.25e-
self.delta = 0.25
self.DR = 0.5
high = np.array(
[
self.maxDeltaXT1 * 1.5,
self.maxDeltaXT2 * 1.5,
self.maxDeltaXT3 * 1.5,
self.maxDeltaXT4 * 1.5,
self.maxDeltaXT5 * 1.5,
self.maxDeltaXT6 * 1.5,
self.maxDeltaR * 1.5
],
dtype=np.float32,
)
self.action_space = spaces.Discrete(14)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
# best geometrical shift values found so far
self.xt1_optim = 0
self.xt2_optim = 0
self.xt3_optim = 0
self.xt4_optim = 0
self.xt5_optim = 0
self.xt6_optim = 0
self.r_optim = -2.5
self.goal = 100e+6 # optimization goal
self.seed()
self.viewer = None
self.state = None
self.steps_beyond_done = None
def step(self, action):
err_msg = "%r (%s) invalid" % (action, type(action))
assert self.action_space.contains(action), err_msg
netDXT1, netDXT2, netDXT3, netDXT4, netDXT5, netDXT6, netDR = self.state
if action == 0:
netDXT1 = netDXT1 + self.delta
elif action == 1:
netDXT1 = netDXT1 - self.delta
elif action == 2:
netDXT2 = netDXT2 + self.delta
elif action == 3:
netDXT2 = netDXT2 - self.delta
elif action == 4:
netDXT3 = netDXT3 + self.delta
elif action == 5:
netDXT3 = netDXT3 - self.delta
elif action == 6:
netDXT4 = netDXT4 + self.delta
elif action == 7:
netDXT4 = netDXT4 - self.delta
elif action == 8:
netDXT5 = netDXT5 + self.delta
elif action == 9:
netDXT5 = netDXT5 - self.delta
elif action == 10:
netDXT6 = netDXT6 + self.delta
elif action == 11:
netDXT6 = netDXT6 - self.delta
elif action == 12:
netDR = netDR + self.DR
elif action == 13:
netDR = netDR - self.DR
# elif action == 14:
# numCav = numCav + 1
# if numCav > 3:
# numCav = 0
#
# elif action == 15:
# numCav = numCav - 1
# if numCav < 0:
# numCav = 3
# perform an action in fdtd and compute Q factor
#FR = FdtdRlNanobeam()
#c = 1e-9 # define conversion from m to nm
#Q = FR.adjustdesignparams(netDXT1*c,netDXT2*c,netDXT3*c,netDXT4*c,netDXT5*c,netDXT6*c,netDR*c)
# update the state
self.state = (netDXT1,netDXT2,netDXT3,netDXT4,netDXT5,netDXT6,netDR)
self.state = np.array(self.state, dtype=np.float32)
state = torch.from_numpy(self.state) #next obs
#predict the reward given next state using the NN
reward = self.NN(state).item()
done = bool(
netDXT1 < -self.maxDeltaXT1
or netDXT1 > self.maxDeltaXT1
or netDXT2 < -self.maxDeltaXT2
or netDXT2 > self.maxDeltaXT2
or netDXT3 < -self.maxDeltaXT3
or netDXT3 > self.maxDeltaXT3
or netDXT4 < -self.maxDeltaXT4
or netDXT4 > self.maxDeltaXT4
or netDXT5 < -self.maxDeltaXT5
or netDXT5 > self.maxDeltaXT5
or netDXT6 < -self.maxDeltaXT6
or netDXT6 > self.maxDeltaXT6
or netDR < -self.maxDeltaR
or netDR > self.maxDeltaR
)
print('\nState: {}, reward: {}\n'.format(self.state, reward))
return np.array(self.state, dtype=np.float32), reward, done, {}
def reset(self):
# self.state = np.zeros((4,), dtype=np.float32)
self.state = (self.xt1_optim,self.xt2_optim,self.xt3_optim,self.xt4_optim,
self.xt5_optim,self.xt6_optim,self.r_optim)
self.steps_beyond_done = None
return np.array(self.state, dtype=np.float32)
#modify PPOconfig
myConfig = ppo.DEFAULT_CONFIG.copy()
args = parser.parse_args()
myConfig["framework"] = args.framework
#myConfig["rollout_fragment_length"] = args.rollfraglen
myConfig['horizon'] = args.horizon
myConfig["train_batch_size"] = args.rollfraglen
#myConfig["num_workers"] = args.num_workers
myConfig["sgd_minibatch_size"] = args.minibatch
myConfig["num_sgd_iter"] = args.num_epochs
#config["batch_mode"] = "complete_episodes"
def training_workflow(config, reporter):
'''method to function as the trainer for the RL algorithm (minicking training_iteration()
in ppo.py) '''
NN = Net().to(device)
learning_rate = 0.001
momentum = 0.9
optimizer = optim.SGD(NN.parameters(), lr = learning_rate, momentum = momentum)
def trainNN(data):
'''method to optimize the NN approximating FDTD '''
X = data['new_obs']
Y = data['rewards']
X = torch.from_numpy(X).to(device)
Y = torch.from_numpy(Y).to(device)
print('\nupdating neural network...')
criterion = nn.MSELoss()
loss = criterion(torch.squeeze(NN(X)), Y)
# optimize the MLP model
optimizer.zero_grad()
loss.backward()
for param in NN.parameters():
# clamp grad values to between -1 and 1
param.grad.data.clamp_(-1,1)
optimizer.step()
print('training loss = {}'.format(loss.item()))
def sample_and_update(
worker,
num_sgd_iter: int,
sgd_minibatch_size: int,
standardize_fields,
):
"""Sample a batch and learn on it to update the policy network and KL divergence"""
#collect samples from env and train/update policy
T1 = SampleBatch.concat_samples([worker.sample()])
info = do_minibatch_sgd(T1, worker.policy_map, worker, num_sgd_iter, sgd_minibatch_size, standardize_fields)
for policy_id, policy_info in info.items():
# Update KL loss with dynamic scaling
# for each (possibly multiagent) policy we are training
kl_divergence = policy_info[LEARNER_STATS_KEY].get("kl")
worker.get_policy(policy_id).update_kl(kl_divergence)
return info, T1
#saving sample batch data
buffer = SampleBatch()
totalBuffer = buffer
env_name = 'Fdtd_NB-v0'
register_env(env_name, lambda config: FdtdEnv())
worker1 = RolloutWorker(
env_creator=lambda c: FdtdEnv(), policy_spec = PPOTorchPolicy, rollout_fragment_length = args.rollfraglen,
policy_config = myConfig, episode_horizon = args.horizon)
register_env("nnEnv", lambda config: FdtdEnv2(NN))
for i in range(config["num_iters"]):
#even iteration: use FDTD
if i % 2 == 0:
print('\n======================\n')
print('Using FDTD and save batch data...\n')
for i in range(4):
# Gather a batch of samples and optimize
std = ["advantages"]
print('\n-----Update the policy and KL using sample batch------\n')
info, T1 = sample_and_update(worker1, args.num_epochs, args.minibatch, std)
buffer = SampleBatch.concat_samples([buffer, T1]) #save to buffer
print(buffer)
#print(T1['new_obs'])
#print(['actions'])
#print(T1['rewards'])
#ToDo: update the policy using policy.learn_on_batch()
#worker1.learn_on_batch(T1)
weights = worker1.get_weights()
#print(weights)
#T2 = SampleBatch.concat_samples([worker1.sample()])
#buffer = SampleBatch.concat_samples([buffer, T2]) #save to buffer
#print(buffer)
#odd iteration: use NN approximating FDTD
else:
print('\n======================\n')
print('........Use NN instead of FDTD........\n')
trainNN(buffer)
buffer = SampleBatch() #clear buffer after updating
worker2 = RolloutWorker(
env_creator=lambda c: FdtdEnv2(NN), policy_spec = PPOTorchPolicy, rollout_fragment_length = args.rollfraglen,
policy_config = myConfig, episode_horizon = args.horizon)
worker2.set_weights(weights)
#wt = worker2.get_weights()
#print(wt)
for i in range(4):
# Gather a batch of samples and optimize
std = ["advantages"]
print('\n-----Update the policy and KL using sample batch------\n')
info, T1 = sample_and_update(worker2, args.num_epochs, args.minibatch, std)
#collect samples
#T2 = SampleBatch.concat_samples([worker2.sample()])
#print(T2)
#print('\n-------Update the policy using sample batch----------\n')
#worker2.learn_on_batch(T2)
new_weights = worker2.get_weights()
#print(new_weights)
worker1.set_weights(new_weights)
# reporter(**collect_metrics(remote_workers=workers))
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus_per_worker or None)
tune.run(
training_workflow,
config={
#"batch_mode": "complete_episodes",
"rollout_fragment_length": args.rollfraglen,
"horizon": args.horizon,
#"num_workers": args.num_workers,
"num_iters": args.num_iters,
"framework": args.framework,
"num_gpus": 1,
"train_batch_size": args.rollfraglen,
#"buffer_size": 20000,
"sgd_minibatch_size": args.minibatch,
"num_sgd_iter": args.num_epochs,
},
verbose=0,
)