forked from kengz/SLM-Lab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_lab.py
99 lines (86 loc) · 3.68 KB
/
run_lab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# The SLM Lab entrypoint
from glob import glob
from slm_lab import EVAL_MODES, TRAIN_MODES
from slm_lab.experiment import search
from slm_lab.experiment.control import Session, Trial, Experiment
from slm_lab.lib import logger, util
from slm_lab.spec import spec_util
import os
import sys
import torch.multiprocessing as mp
debug_modules = [
# 'algorithm',
]
debug_level = 'DEBUG'
logger.toggle_debug(debug_modules, debug_level)
logger = logger.get_logger(__name__)
def get_spec(spec_file, spec_name, lab_mode, pre_):
'''Get spec using args processed from inputs'''
if lab_mode in TRAIN_MODES:
if pre_ is None: # new train trial
spec = spec_util.get(spec_file, spec_name)
else:
# for resuming with train@{predir}
# e.g. train@latest (fill find the latest predir)
# e.g. train@data/reinforce_cartpole_2020_04_13_232521
predir = pre_
if predir == 'latest':
predir = sorted(glob(f'data/{spec_name}*/'))[-1] # get the latest predir with spec_name
_, _, _, _, experiment_ts = util.prepath_split(predir) # get experiment_ts to resume train spec
logger.info(f'Resolved to train@{predir}')
spec = spec_util.get(spec_file, spec_name, experiment_ts)
elif lab_mode == 'enjoy':
# for enjoy@{session_spec_file}
# e.g. enjoy@data/reinforce_cartpole_2020_04_13_232521/reinforce_cartpole_t0_s0_spec.json
session_spec_file = pre_
assert session_spec_file is not None, 'enjoy mode must specify a `enjoy@{session_spec_file}`'
spec = util.read(f'{session_spec_file}')
else:
raise ValueError(f'Unrecognizable lab_mode not of {TRAIN_MODES} or {EVAL_MODES}')
return spec
def run_spec(spec, lab_mode):
'''Run a spec in lab_mode'''
os.environ['lab_mode'] = lab_mode # set lab_mode
spec = spec_util.override_spec(spec, lab_mode) # conditionally override spec
if lab_mode in TRAIN_MODES:
spec_util.save(spec) # first save the new spec
if lab_mode == 'search':
spec_util.tick(spec, 'experiment')
Experiment(spec).run()
else:
spec_util.tick(spec, 'trial')
Trial(spec).run()
elif lab_mode in EVAL_MODES:
Session(spec).run()
else:
raise ValueError(f'Unrecognizable lab_mode not of {TRAIN_MODES} or {EVAL_MODES}')
def get_spec_and_run(spec_file, spec_name, lab_mode):
'''Read a spec and run it in lab mode'''
logger.info(f'Running lab spec_file:{spec_file} spec_name:{spec_name} in mode:{lab_mode}')
if '@' in lab_mode: # process lab_mode@{predir/prename}
lab_mode, pre_ = lab_mode.split('@')
else:
pre_ = None
spec = get_spec(spec_file, spec_name, lab_mode, pre_)
if 'spec_params' not in spec:
run_spec(spec, lab_mode)
else: # spec is parametrized; run them in parallel using ray
param_specs = spec_util.get_param_specs(spec)
search.run_param_specs(param_specs)
def main():
'''Main method to run jobs from scheduler or from a spec directly'''
args = sys.argv[1:]
if len(args) <= 1: # use scheduler
job_file = args[0] if len(args) == 1 else 'job/experiments.json'
for spec_file, spec_and_mode in util.read(job_file).items():
for spec_name, lab_mode in spec_and_mode.items():
get_spec_and_run(spec_file, spec_name, lab_mode)
else: # run single spec
assert len(args) == 3, f'To use sys args, specify spec_file, spec_name, lab_mode'
get_spec_and_run(*args)
if __name__ == '__main__':
try:
mp.set_start_method('spawn') # for distributed pytorch to work
except RuntimeError:
pass
main()