-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_dqn_play.py
executable file
·58 lines (48 loc) · 1.76 KB
/
03_dqn_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
import gym
import time
import argparse
import numpy as np
import torch
from lib import wrappers
from lib import dqn_model
import collections
DEFAULT_ENV_NAME = "PongNoFrameskip-v4"
FPS = 25
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", required=True, help="Model file to load")
parser.add_argument("-e", "--env", default=DEFAULT_ENV_NAME,
help="Environment name to use, default=" + DEFAULT_ENV_NAME)
parser.add_argument("-r", "--record", help="Directory to store video recording")
parser.add_argument("--no-visualize", default=True, action='store_false', dest='visualize',
help="Disable visualization of the game play")
args = parser.parse_args()
env = wrappers.make_env(args.env)
if args.record:
env = gym.wrappers.Monitor(env, args.record)
net = dqn_model.DQN(env.observation_space.shape, env.action_space.n)
net.load_state_dict(torch.load(args.model, map_location=lambda storage, loc: storage))
state = env.reset()
total_reward = 0.0
c = collections.Counter()
while True:
start_ts = time.time()
if args.visualize:
env.render()
state_v = torch.tensor(np.array([state], copy=False))
q_vals = net(state_v).data.numpy()[0]
action = np.argmax(q_vals)
c[action] += 1
state, reward, done, _ = env.step(action)
total_reward += reward
if done:
break
if args.visualize:
delta = 1/FPS - (time.time() - start_ts)
if delta > 0:
time.sleep(delta)
print("Total reward: %.2f" % total_reward)
print("Action counts:", c)
if args.record:
env.env.close()