forked from sfikas/quaternion-resnet-kws
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
242 lines (222 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import logging
import tqdm
import numpy as np
import torch.cuda
import torch.nn as nn
from torch.nn.modules.loss import BCEWithLogitsLoss
from torch.utils.data import DataLoader
import torch.backends.cudnn as cudnn
from datetime import datetime
from uuid import uuid4
cudnn.benchmark = True
import torch.nn.functional as F
from torchsummary import summary
from sophia_dataset import SophiaDataset
from piop_dataset import PiopDataset
import auxiliary_functions as utils
from models import ResnetCNN_v2
def augment_from_1_to_4_channels(x, device):
N, _, H, W = x.shape
paddingchannel = torch.zeros(N, 3, H, W).to(device)
x = torch.cat([x, paddingchannel], 1)
return(x)
def unique_id():
"""
unique_id
This is used to create a unique string to be used as a folder name and model instances.
"""
return(datetime.now().strftime('%Y-%m-%d-%H-%M-%S-') + uuid4().hex[0:5])
logging.basicConfig(format='[%(asctime)s, %(levelname)s, %(name)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger('Hypercomplex Keyword Spotting::train')
logger.info('--- Running Hypercomplex Keyword Spotting Training ---')
# argument parsing
parser = argparse.ArgumentParser()
# - train arguments
parser.add_argument('--learning_rate', '-lr', type=float, default=1e-4, #In install_info georgeretsi writes lr=1e-3 though
help='lr')
parser.add_argument('--dataset', choices=['SOPHIA', 'PIOP'], default='SOPHIA',
help='Which dataset to use. Default: SOPHIA')
parser.add_argument('--model', choices=['standard', 'resnet'], default='resnet')
parser.add_argument('--quaternion', dest='quaternion', action='store_true', help='Use the quaternionized model.')
parser.add_argument('--small_version', dest='small_version', action='store_true', help='Use a cut-down version of the model.')
parser.add_argument('--display', action='store', type=int, default=100,
help='The number of iterations after which to display the loss values. Default: 100')
parser.add_argument('--gpu_id', '-gpu', action='store',
type=lambda str_list: [int(elem) for elem in str_list.split(',')],
default='0',
help='The ID of the GPU to use. Default: GPU 0.')
parser.add_argument('--batch_size', '-bs', action='store', type=int, default=80,
help='The batch size after which the gradient is computed.')
parser.add_argument('--max_epochs', '-me', action='store', type=int, default=900)
parser.add_argument('--fixed_size', '-fim', action='store',
type=lambda str_tuple: tuple([int(elem) for elem in str_tuple.split(',')]),
help='Specifies the images to be resized to a fixed size when presented to the CNN. Argument must be two comma seperated numbers.')
parser.add_argument('--network_cfg', '-cfg', action='store',
type=lambda str_list: utils.parse_cfg(str_list),
help="Specifies network backbone configuration. \
Example: 2,64XMX4,128 gives a (2,64) conv layer followed by max-pooling followed by a (4,128) conv layer.")
parser.add_argument('--dataset_folder', required=False,
default=None,
help='Folder containing datasets.')
parser.add_argument('--dryrun', dest='dryrun', action='store_true', help='Debug mode: Just load the datasets and quit before NN model creation.')
parser.add_argument('--print_network', dest='print_network', action='store_true', help='Just print network info.') #TODO implement
parser.set_defaults(dryrun=False,
quaternion=False,
small_version=False,
print_network=False,
#fixed_size=(128, None),
fixed_size = (32, 128),
#network_cfg='2,64 x M x 64,128 x M x 4,256' #cnn_cfg = [(2, 64), 'M', (4, 128), 'M', (4, 256)] #, (2, 512)]
#network_cfg = [(2, 64), 'M', (4, 128), 'M', (4, 256)], #, (2, 512)]
network_cfg = [(2, 64), 'M'], #, (2, 512)]
)
args = parser.parse_args()
args.restart_epochs = args.max_epochs // 3
if(args.fixed_size[0] is None or args.fixed_size[1] is None):
raise NotImplementedError("Don't use None for the fixed size arguments -- batch size should then be set to 1. (=bad bad bad)")
logger.info('###########################################')
logger.info('Experiment Parameters:')
for key, value in vars(args).items():
logger.info('%s: %s', str(key), str(value))
logger.info('###########################################')
if not torch.cuda.is_available() or args.gpu_id[0] == -1:
args.gpu_id = None
device = torch.device('cpu')
logger.warning('Could not find CUDA environment, using CPU mode (device: {})'.format(device))
else:
device = torch.device('cuda:{}'.format(args.gpu_id[0]))
logger.warning('Using GPU mode. Specifically our device is {}'.format(device))
np.set_printoptions(formatter={'float': lambda x: "{0:0.1f}".format(x)})
logger.info('Loading dataset.')
if args.dataset == 'SOPHIA':
myDataset = SophiaDataset
elif args.dataset == 'PIOP':
myDataset = PiopDataset
else:
raise NotImplementedError
train_set = myDataset(args.dataset_folder, 'train', 'word', fixed_size=args.fixed_size,
transforms=[lambda x: utils.affine_transformation(x, s=.2)], character_classes=None) #(128, 1024))
#transforms=None, character_classes=None) #(128, 1024))
test_set = myDataset(args.dataset_folder, 'test', 'word', fixed_size=args.fixed_size,
transforms=None, character_classes=train_set.character_classes) #(None,None))
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, num_workers=4)
logger.info('Preparing Net...')
if args.dryrun:
exit(1)
phoc_size = len(test_set[0][2])
logger.info('Target size will be a descriptor of size {}.'.format(phoc_size))
if args.model == 'standard':
raise NotImplementedError('Deprecated.')
elif args.model == 'resnet':
CNN = ResnetCNN_v2
else:
raise ValueError('Unknown model name.')
cnn = CNN(n_out=phoc_size, cnn_cfg=args.network_cfg, quaternionized=args.quaternion, small_version=args.small_version)
#cnn.init_weights()
cnn = cnn.to(device)
if args.gpu_id is not None and len(args.gpu_id) > 1:
raise NotImplementedError('Parallelism across GPUs not implemented yet.')
# nn.parallel.DistributedDataParallel
cnn = nn.DataParallel(cnn, device_ids=args.gpu_id)
loss = BCEWithLogitsLoss(size_average=False) #optionally use some weighting there, to accomodate for rare PHOC bins
if(args.print_network):
logger.info('Printing info for a hypothetical {}x{} input to the network.'.format(args.fixed_size[0], args.fixed_size[1]))
summary(cnn, (4, args.fixed_size[0], args.fixed_size[1]))
total_params = sum(p.numel() for p in cnn.parameters() if p.requires_grad)
print('CNN total trainable params = {}'.format(total_params))
exit(0)
optimizer = torch.optim.Adam(cnn.parameters(), args.learning_rate, weight_decay=0.00005)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.restart_epochs)
executionid = 'qkws-{}'.format(
unique_id(),
)
logger.info('Using execution id: {} (search the subfolder of the same name in the results repertoire)'.format(
executionid,
))
queries, word_numerical_labels = test_set.compute_queries()
if not queries:
raise ValueError('No query words could be determined! (is the test set too small?)')
## Variables to save to npz
#
test_loss_history = []
train_loss_history = []
map_history = []
for epoch in range(1, args.max_epochs+1):
cnn.train()
losses = []
for idx, (img, transcr, phoc) in enumerate(tqdm.tqdm(train_loader)):
optimizer.zero_grad()
img = img.to(device)
phoc_predicted_logits = cnn(augment_from_1_to_4_channels(img, device))
phoc_targets = phoc.to(device)
#Image.fromarray(np.uint8(img[0].cpu().detach().numpy().squeeze() * 255.)).save('/tmp/a{}_{}.png'.format(idx,transcr[0]))
loss_val = loss(phoc_predicted_logits, phoc_targets)
loss_val.backward()
optimizer.step()
losses.append(loss_val.cpu().detach().numpy())
train_loss_history.append(np.mean(np.array(losses)))
logger.info('Epoch: {:03d} -----Binary CE loss {:.3f}'.format(epoch, train_loss_history[-1]))
scheduler.step()
if epoch % 2 == 0:
# mode -> 0: QbE, 1:QbS, 2:both
#distance = 'cosine'
distance = 'euclidean'
cnn.eval()
logger.info('Testing KWS at epoch %d', epoch)
tdecs = []
transcrs = []
loss_test = []
for img, transcr, phoc in test_loader:
img = img.to(device)
with torch.no_grad():
test_phoc_predicted_logits = cnn(augment_from_1_to_4_channels(img, device))
test_predicted_phoc = torch.sigmoid(test_phoc_predicted_logits)
if distance == 'euclidean':
tdec = test_predicted_phoc.cpu().numpy().squeeze()
elif distance == 'cosine':
tdec = F.normalize(test_predicted_phoc, dim=1).cpu().numpy().squeeze()
tdecs += [tdec]
transcrs += [list(transcr)]
tt = loss(test_phoc_predicted_logits, phoc.to(device))
loss_test.append(tt.cpu().detach().numpy())
test_loss_history.append(np.mean(loss_test))
print('Loss_test: {}'.format(test_loss_history[-1]))
tdecs = np.concatenate(tdecs)
transcrs = np.concatenate(transcrs)
qids = np.asarray([i for i,t in enumerate(transcrs) if t in queries])
qdecs = tdecs[qids]
if distance == 'euclidean':
D = -2 * np.dot(qdecs, np.transpose(tdecs)) + \
np.linalg.norm(tdecs, axis=1).reshape((1, -1))**2 + \
np.linalg.norm(qdecs, axis=1).reshape((-1, 1))**2
elif distance == 'cosine':
D = -np.dot(qdecs, np.transpose(tdecs))
# bce similarity
#S = np.dot(qphocs_est, np.log(np.transpose(phocs_est))) + np.dot(1-qphocs_est, np.log(np.transpose(1-phocs_est)))
Id = np.argsort(D, axis=1)
while Id.max() > Id.shape[1]:
Id = np.argsort(D, axis=1)
ap = [utils.average_precision(word_numerical_labels[Id[i]][1:] == word_numerical_labels[qc]) for i, qc in enumerate(qids)]
map_qbe = 100 * np.mean(ap)
logger.info('QBE MAP at epoch %d: %f', epoch, map_qbe)
map_history.append(map_qbe)
cnn.train()
## END OF test_kws
if epoch % 10 == 0:
logger.info('Saving net after %d epochs', epoch)
save_fn = 'results/qkws-cnn-{}.pt'.format(executionid)
torch.save(cnn.cpu().state_dict(), save_fn)
cnn = cnn.to(device)
np.savez_compressed('results/qkws-cnn-{}.npz'.format(executionid),
test_loss_history=test_loss_history,
train_loss_history=train_loss_history,
map_history=map_history,
)
if epoch % args.restart_epochs == 0:
optimizer = torch.optim.Adam(cnn.parameters(), args.learning_rate, weight_decay=0.00005)
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [int(.5 * args.restart_epochs), int(.75 * args.restart_epochs)])
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.restart_epochs)