-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJPCCCK_utils_2_reviews.py
818 lines (756 loc) · 25.4 KB
/
JPCCCK_utils_2_reviews.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import pyemma
import matplotlib.pyplot as plt
import pandas as pd
import pyemma.coordinates as coor
import mdtraj as md
import numpy as np
import matplotlib as mpl
import pyemma
import matplotlib.pyplot as plt
import pandas as pd
import os
import seaborn as sns
import MDAnalysis as mda
from MDAnalysis.analysis import rms
def plot_free_energy(
cc_x=None,
cc_y=None,
cc_x_lev=None,
cc_y_lev=None,
cc_x_ess=None,
cc_y_ess=None,
free_energy_per_cluster=None,
free_energy_per_clusterT=None,
free_energy_per_clusterT_ess=None,
dist_cmap=None,
title=None,
nstates=None,
pcca_sets=None,
pcca_setsT=None,
pcca_setsT_ess=None,
cols=None,
size=None,
frames_closest_to_minimum_energy_coor=None,
frames_closest_to_minimum_energy_coorT=None,
frames_closest_to_minimum_energy_coorT_ess=None,
no_points=False,
full_title="Full",
lev_title="Trim - LEV",
ess_title="Trim - ESS",
):
if pcca_setsT is None:
pcca_setsT = pcca_sets
if pcca_setsT_ess is None:
pcca_setsT_ess = pcca_sets
fig1, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(20, 5))
vmax = np.max(free_energy_per_cluster)
tcf1 = ax1.tricontourf(
cc_x,
cc_y,
free_energy_per_cluster,
200,
cmap=dist_cmap,
alpha=0.9,
linestyles="dotted",
linewidths=1,
antialiased=False, # , vmin=0, vmax=vmax
)
cbar_ = fig1.colorbar(tcf1, ax=[ax1, ax2, ax3])
cbar_.set_label("Free energy / kT", fontsize=14)
ax1.set_title(full_title, fontsize=20)
ax1.set_xlabel("TIC 1", fontsize=14)
ax1.tick_params(
axis="both", which="major", labelsize=14
) # Set ticks fontsize to 14
ax1.set_ylabel("TIC 2", fontsize=14)
if not no_points:
for i in range(nstates):
ax1.scatter(cc_x[pcca_sets[i]], cc_y[pcca_sets[i]], color=cols[i], s=size)
centroid_label = f"centroid {cols[i]} {i} ({frames_closest_to_minimum_energy_coor[i][0]:.4f}, {frames_closest_to_minimum_energy_coor[i][1]:.2f})"
ax1.scatter(
frames_closest_to_minimum_energy_coor[i][0],
frames_closest_to_minimum_energy_coor[i][1],
color="white",
# color=cols[i],
marker="*",
label=centroid_label,
)
ax1.grid()
ax1.set_xlim(-1, 1.8) # Set x limits
# ax1.legend()
if cc_x_lev is None:
cc_x_lev = cc_x
cc_y_lev = cc_y
tcf2 = ax2.tricontourf(
cc_x_lev,
cc_y_lev,
free_energy_per_clusterT,
200,
cmap=dist_cmap,
alpha=0.9,
linestyles="dotted",
linewidths=1,
antialiased=False, # , vmin=0, vmax=vmax
)
ax2.set_title(lev_title, fontsize=20)
ax2.set_xlabel("TIC 1", fontsize=14)
ax2.tick_params(
axis="both", which="major", labelsize=14
) # Set ticks fontsize to 14
# ax2.set_ylabel("TIC 2", fontsize= 14)
if not no_points:
for i in range(nstates):
ax2.scatter(
cc_x_lev[pcca_setsT[i]], cc_y_lev[pcca_setsT[i]], color=cols[i], s=size
)
centroid_label = f"centroid {cols[i]} {i} ({frames_closest_to_minimum_energy_coorT[i][0]:.4f}, {frames_closest_to_minimum_energy_coorT[i][1]:.2f})"
ax2.scatter(
frames_closest_to_minimum_energy_coorT[i][0],
frames_closest_to_minimum_energy_coorT[i][1],
color="white",
# color=cols[i],
marker="*",
label=centroid_label,
)
ax2.grid()
ax2.set_xlim(-1, 1.8) # Set x limits
# ax2.legend()
if cc_x_ess is None:
cc_x_ess = cc_x
cc_y_ess = cc_y
tcf3 = ax3.tricontourf(
cc_x_ess,
cc_y_ess,
free_energy_per_clusterT_ess,
200,
cmap=dist_cmap,
alpha=0.9,
linestyles="dotted",
linewidths=1,
antialiased=False, # , vmin=0, vmax=vmax
)
ax3.set_title(ess_title, fontsize=20)
ax3.set_xlabel("TIC 1", fontsize=14)
ax3.tick_params(
axis="both", which="major", labelsize=14
) # Set ticks fontsize to 14
ax3.set_ylabel("TIC 2", fontsize=14)
if not no_points:
for i in range(nstates):
ax3.scatter(
cc_x_ess[pcca_setsT_ess[i]],
cc_y_ess[pcca_setsT_ess[i]],
color=cols[i],
s=size,
)
centroid_label = f"centroid {cols[i]} {i} ({frames_closest_to_minimum_energy_coorT_ess[i][0]:.4f}, {frames_closest_to_minimum_energy_coorT_ess[i][1]:.2f})"
ax3.scatter(
frames_closest_to_minimum_energy_coorT_ess[i][0],
frames_closest_to_minimum_energy_coorT_ess[i][1],
color="white",
# color=cols[i],
marker="*",
label=centroid_label,
)
ax3.grid()
ax3.set_xlim(-1, 1.8) # Set x limits
# ax3.legend()
fig1.suptitle(title)
def find_frames_closest_to_minimum_energy(
FES=None,
FES_T=None,
FES_T_ess=None,
M=None,
MT=None,
MT_ess=None,
clust=None,
clustT=None,
clustT_ess=None,
tica_concatenated_full=None,
tica_concatenated_trim_lev=None,
tica_concatenated_trim_ess=None,
nstates=None,
):
pcca_sets = M.metastable_sets
pcca_setsT = MT.metastable_sets
pcca_setsT_ess = MT_ess.metastable_sets
frames_closest_to_minimum_energy_coor = []
frames_closest_to_minimum_energy_coor_T = []
frames_closest_to_minimum_energy_coor_T_ess = []
tICA_first_two = tica_concatenated_full[:, :2]
frames_closest_to_minimum_energy = []
tICA_first_twoT = tica_concatenated_trim_lev[:, :2]
frames_closest_to_minimum_energyT = []
tICA_first_twoT_ess = tica_concatenated_trim_ess[:, :2]
frames_closest_to_minimum_energyT_ess = []
(
closest_10_frame_index_total,
closest_10_frame_indexT_total,
closest_10_frame_indexT_ess_total,
) = [], [], []
minimum_energy, minimum_energyT, minimum_energyT_ess = [], [], []
if clustT is None:
clustT = clust
clustT_ess = clust
for state in range(nstates):
# Gets the indexes of the cluster centers in the state
indexes_cluster_centers_per_state = pcca_sets[state]
# print("pccasets",pcca_sets[state])
## TODO: fix getting the pcca by automation
indexes_cluster_centers_per_stateT = pcca_sets[state]
indexes_cluster_centers_per_stateT_ess = pcca_sets[state]
# Gets the coordinates of the cluster centers in the state
coord_cluster_per_state = clust.clustercenters[
indexes_cluster_centers_per_state
]
coord_cluster_per_stateT = clustT.clustercenters[
indexes_cluster_centers_per_stateT
]
coord_cluster_per_stateT_ess = clustT_ess.clustercenters[
indexes_cluster_centers_per_stateT_ess
]
energy_of_cluster_center_per_state = FES[indexes_cluster_centers_per_state]
# print("indexes", indexes_cluster_centers_per_stateT)
energy_of_cluster_center_per_stateT = FES_T[indexes_cluster_centers_per_stateT]
energy_of_cluster_center_per_stateT_ess = FES_T_ess[
indexes_cluster_centers_per_stateT_ess
]
if np.any(energy_of_cluster_center_per_stateT == 0):
print("lev", state)
# Gets the index of the cluster center with minimum energy in the state
index_minimum_energy = np.argmin(energy_of_cluster_center_per_state, axis=0)
minimum_energy.append(np.min(energy_of_cluster_center_per_state))
# print("state", state, "energy_per_cluster_center", energy_of_cluster_center_per_stateT)
index_minimum_energyT = np.argmin(energy_of_cluster_center_per_stateT, axis=0)
minimum_energyT.append(np.min(energy_of_cluster_center_per_stateT))
index_minimum_energyT_ess = np.argmin(
energy_of_cluster_center_per_stateT_ess, axis=0
)
minimum_energyT_ess.append(np.min(energy_of_cluster_center_per_stateT_ess))
## FINDING THE CLOSEST FRAME TO THE FREE MINIMUM ENERGY COORDINATE
dist = tICA_first_two - coord_cluster_per_state[index_minimum_energy]
distances = np.linalg.norm(dist, axis=1)
closest_frame_index = np.argmin(distances)
closest_10_frame_index = np.argsort(distances)[:10]
coor_minimum_energy = tICA_first_two[closest_frame_index]
frames_closest_to_minimum_energy.append(closest_frame_index)
dist = tICA_first_twoT - coord_cluster_per_stateT[index_minimum_energyT]
distances = np.linalg.norm(dist, axis=1)
closest_frame_indexT = np.argmin(distances)
closest_10_frame_indexT = np.argsort(distances)[:10]
coor_minimum_energyT = tICA_first_twoT[closest_frame_indexT]
frames_closest_to_minimum_energyT.append(closest_frame_indexT)
dist = (
tICA_first_twoT_ess
- coord_cluster_per_stateT_ess[index_minimum_energyT_ess]
)
distances = np.linalg.norm(dist, axis=1)
closest_frame_indexT_ess = np.argmin(distances)
closest_10_frame_indexT_ess = np.argsort(distances)[:10]
coor_minimum_energyT_ess = tICA_first_twoT_ess[closest_frame_indexT_ess]
frames_closest_to_minimum_energyT_ess.append(closest_frame_indexT_ess)
frames_closest_to_minimum_energy_coor.append(
# coord_cluster_per_state[index_minimum_energy]
coor_minimum_energy
) # to plot the centers with minimum energy
frames_closest_to_minimum_energy_coor_T.append(
# coord_cluster_per_stateT[index_minimum_energyT]
coor_minimum_energyT
) # to plot the centers with minimum energy
frames_closest_to_minimum_energy_coor_T_ess.append(
# coord_cluster_per_stateT_ess[index_minimum_energyT_ess]
coor_minimum_energyT_ess
) # to plot the centers with minimum energy
closest_10_frame_index_total.append(closest_10_frame_index)
closest_10_frame_indexT_total.append(closest_10_frame_indexT)
closest_10_frame_indexT_ess_total.append(closest_10_frame_indexT_ess)
closest_10_frame_index, closest_10_frame_indexT, closest_10_frame_indexT_ess = (
[],
[],
[],
)
return (
frames_closest_to_minimum_energy_coor,
frames_closest_to_minimum_energy_coor_T,
frames_closest_to_minimum_energy_coor_T_ess,
frames_closest_to_minimum_energy,
frames_closest_to_minimum_energyT,
frames_closest_to_minimum_energyT_ess,
closest_10_frame_index_total,
closest_10_frame_indexT_total,
closest_10_frame_indexT_ess_total,
minimum_energy,
minimum_energyT,
minimum_energyT_ess,
)
def save_frames(folder_path, energy_method, frames_closest, mdtrajectories, prefix):
frames_minimum = []
frames_minimum_files = []
for state, frame in enumerate(frames_closest):
frame_in_trajectory = mdtrajectories[frame]
file_name = os.path.join(
folder_path, f"{prefix}_state_{state}_frame_{frame}_{energy_method}.pdb"
)
frames_minimum_files.append(file_name)
frames_minimum.append(frame_in_trajectory)
frame_in_trajectory.save(file_name)
return frames_minimum, frames_minimum_files
def save_10_frames(folder_path, energy_method, frames_closest, mdtrajectories, prefix):
frames_10_minimum = []
frames_10_minimum_files = []
frames_10_minimum_total = []
frames_10_minimum_files_total = []
for state, frames_10 in enumerate(frames_closest):
for i, frame in enumerate(frames_10):
frame_in_trajectory = mdtrajectories[frame]
file_name = os.path.join(
folder_path,
f"{prefix}_{energy_method}_state_{state}_{i}_frame_{frame}.pdb",
)
frames_10_minimum_files.append(file_name)
frames_10_minimum.append(frame_in_trajectory)
frame_in_trajectory.save(file_name)
frames_10_minimum_total.append(frames_10_minimum)
frames_10_minimum_files_total.append(frames_10_minimum_files)
frames_10_minimum = []
frames_10_minimum_files = []
return frames_10_minimum_total, frames_10_minimum_files_total
def create_pyemma_energy_plots(
tica_concatenated_full,
tica_concatenated_trim,
tica_concatenated_trim_ess,
M,
MT,
MT_ess,
pcca_sets,
frames_closest_to_minimum_energy_coor,
frames_closest_to_minimum_energy_coor_T,
frames_closest_to_minimum_energy_coor_T_ess,
nstates,
cc_x,
cc_y,
cols,
size,
title,
):
fig, axs = plt.subplots(figsize=(20, 8), sharey=True, ncols=3, sharex=True)
(ax1, ax2, ax3) = axs
misc_energy = pyemma.plots.plot_free_energy(
tica_concatenated_full[:, 0],
tica_concatenated_full[:, 1],
cmap="nipy_spectral",
nbins=200,
cbar=False,
cbar_label="Full - Free energy/kT",
zorder=0,
alpha=1,
ax=ax1,
vmin=0,
vmax=10,
legacy=False,
)
cbar_ = fig.colorbar(misc_energy[2]["mappable"], ax=[ax1, ax2, ax3])
cbar_.set_label("Free energy / kT", fontsize=14)
ax1.grid()
for i in range(nstates):
# ax1.scatter(cc_x[pcca_sets[i]], cc_y[pcca_sets[i]], color=cols[i], s=size)
centroid_label = f"centroid {cols[i]} {i} ({frames_closest_to_minimum_energy_coor[i][0]:.4f}, {frames_closest_to_minimum_energy_coor[i][1]:.2f})"
ax1.scatter(
frames_closest_to_minimum_energy_coor[i][0],
frames_closest_to_minimum_energy_coor[i][1],
# color="white",
color=cols[i],
marker="*",
label=centroid_label,
)
ax1.legend()
misc_energyT = pyemma.plots.plot_free_energy(
tica_concatenated_trim[:, 0],
tica_concatenated_trim[:, 1],
cmap="nipy_spectral",
nbins=200,
cbar=False,
cbar_label="Trim - Free energy/kT",
zorder=0,
alpha=1,
ax=ax2,
vmin=0,
vmax=10,
)
ax2.grid()
for i in range(nstates):
# ax2.scatter(cc_x[pcca_sets[i]], cc_y[pcca_sets[i]], color=cols[i], s=size)
centroid_label = f"centroid {i} ({frames_closest_to_minimum_energy_coor_T[i][0]:.4f}, {frames_closest_to_minimum_energy_coor_T[i][1]:.2f})"
ax2.scatter(
frames_closest_to_minimum_energy_coor_T[i][0],
frames_closest_to_minimum_energy_coor_T[i][1],
# color="white",
color=cols[i],
marker="*",
label=centroid_label,
)
ax2.legend()
misc_energyT_ess = pyemma.plots.plot_free_energy(
tica_concatenated_trim_ess[:, 0],
tica_concatenated_trim_ess[:, 1],
# weights=np.concatenate(MT_ess.trajectory_weights()),
cmap="nipy_spectral",
nbins=200,
cbar=False,
cbar_label="Trim ESS - Free energy/kT",
zorder=0,
alpha=1,
ax=ax3,
vmin=0,
vmax=10,
)
ax3.grid()
for i in range(nstates):
# ax3.scatter(cc_x[pcca_sets[i]], cc_y[pcca_sets[i]], color=cols[i], s=size)
centroid_label = f"centroid {i} ({frames_closest_to_minimum_energy_coor_T_ess[i][0]:.4f}, {frames_closest_to_minimum_energy_coor_T_ess[i][1]:.2f})"
ax3.scatter(
frames_closest_to_minimum_energy_coor_T_ess[i][0],
frames_closest_to_minimum_energy_coor_T_ess[i][1],
# color="white",
color=cols[i],
marker="*",
label=centroid_label,
)
ax3.legend()
fig.suptitle(title)
def computeRMSD(u1, u2, nstates, selection):
return np.sqrt(
(
(
(
u1.select_atoms(selection).positions
- u2.select_atoms(selection).positions
)
** 2
)
* 3
).mean()
)
def calculate_rmsd_values_s(
full_u=None,
full_p=None,
full_s=None,
trim_u=None,
trim_p=None,
trim_s=None,
full_u_f=None,
full_p_f=None,
full_s_f=None,
trim_u_f=None,
trim_p_f=None,
trim_s_f=None,
labels=None,
method=None,
nstates=None,
selection=None,
title=None,
comparison_list=None,
):
fig, axs = plt.subplots(
figsize=(16, 10), sharey=True, ncols=3, nrows=2, sharex=True
)
total_values = []
for state, state_trim in zip(range(nstates), comparison_list):
frames_in_state = [
full_u[state],
full_p[state],
full_s[state],
trim_u[state_trim],
trim_p[state_trim],
trim_s[state_trim],
]
frames_in_state_f = [
full_u_f[state],
full_p_f[state],
full_s_f[state],
trim_u_f[state_trim],
trim_p_f[state_trim],
trim_s_f[state_trim],
]
rmsd_values = np.zeros((len(frames_in_state), len(frames_in_state)))
for i in range(len(frames_in_state)):
for j in range(len(frames_in_state)):
if method == "mdtraj":
rmsd_values[i, j] = md.rmsd(frames_in_state[i], frames_in_state[j])
elif method == "compute":
u1 = mda.Universe(frames_in_state_f[i])
u2 = mda.Universe(frames_in_state_f[j])
rmsd_values[i, j] = computeRMSD(u1, u2, nstates, selection)
elif method == "mdanalysis":
u1 = mda.Universe(frames_in_state_f[i])
u2 = mda.Universe(frames_in_state_f[j])
v = rms.rmsd(
u1.select_atoms(selection).positions,
u2.select_atoms(selection).positions,
superposition=True,
)
rmsd_values[i, j] = v
total_values.append(rmsd_values)
vmin = np.min(total_values)
vmax = np.max(total_values)
for state in range(nstates):
df = pd.DataFrame(total_values[state])
ax = axs[state // 3, state % 3]
# Create the heatmap using seaborn
im = sns.heatmap(
df,
cmap="viridis",
ax=ax,
cbar=True,
annot=True,
fmt=".2f",
cbar_kws={"label": "RMSD"},
vmin=vmin,
vmax=vmax,
)
# Add title to the heatmap
ax.set_title(f"State {state}", fontsize=20)
# Set y and x labels
ax.set_yticklabels(labels)
ax.set_xticklabels(labels)
fig.suptitle(title)
plt.show()
def calculate_average_rmsd(frames_list, frames_files, method, nstates, selection):
rmsd_list = []
for state, frames in enumerate(frames_list):
rmsd_sum = 0
for frame in range(1, len(frames)):
reference_frame = frames[0]
reference_frame_file = frames_files[state][0]
if method == "mdtraj":
frames[frame].center_coordinates()
reference_frame.center_coordinates()
rmsd = md.rmsd(frames[frame], reference_frame, precentered=True).item()
elif method == "compute":
u1 = mda.Universe(frames_files[state][frame])
u2 = mda.Universe(reference_frame_file)
rmsd = computeRMSD(u1, u2, nstates, selection)
elif method == "mdanalysis":
u1 = mda.Universe(frames_files[state][frame])
u2 = mda.Universe(reference_frame_file)
rmsd = rms.rmsd(
u1.select_atoms(selection).positions,
u2.select_atoms(selection).positions,
superposition=True,
center=True,
)
rmsd_sum += rmsd
average_rmsd = rmsd_sum / (len(frames) - 1)
rmsd_list.append(average_rmsd)
return rmsd_list
def get_histogram(xall, yall, nbins=100, weights=None, avoid_zero_count=False):
z, xedge, yedge = np.histogram2d(xall, yall, bins=nbins, weights=weights)
x = 0.5 * (xedge[:-1] + xedge[1:])
y = 0.5 * (yedge[:-1] + yedge[1:])
if avoid_zero_count:
z = np.maximum(z, np.min(z[z.nonzero()]))
return x, y, z.T # transpose to match x/y-directions
def _to_density(z):
"""Normalize histogram counts."""
return z / float(z.sum())
def plot_density(
xall,
yall,
ax=None,
cmap=None,
ncontours=100,
vmin=None,
vmax=None,
levels=None,
cbar=True,
cax=None,
cbar_label="Density",
cbar_orientation="vertical",
logscale=False,
nbins=100,
weights=None,
avoid_zero_count=False,
min_v=None,
max_v=None,
**kwargs,
):
"""Plot a two-dimensional density map using a histogram of
scattered data.
"""
x, y, z = get_histogram(
xall, yall, nbins=nbins, weights=weights, avoid_zero_count=avoid_zero_count
)
pi = _to_density(z)
# print(pi.min(), pi.max())
pi = np.ma.masked_where(pi <= 0, pi)
if logscale:
from matplotlib.colors import LogNorm
# print(vmin, vmax)
norm = LogNorm(vmin=vmin, vmax=vmax)
if levels is None:
levels = np.logspace(
np.floor(np.log10(pi.min())), np.ceil(np.log10(pi.max())), ncontours + 1
)
values = np.logspace(
np.floor(np.log10(pi.min())), np.ceil(np.log10(pi.max()))
)
# minmax = (np.floor(np.log10(pi.min())), np.ceil(np.log10(pi.max())))
min_v = min(values)
max_v = max(values)
# print(min_v, max_v)
else:
norm = None
fig, ax, misc = plot_map(
x,
y,
pi,
ax=ax,
cmap=cmap,
ncontours=ncontours,
vmin=vmin,
vmax=vmax,
levels=levels,
cbar=cbar,
cax=cax,
cbar_label=cbar_label,
cbar_orientation=cbar_orientation,
norm=norm,
**kwargs,
)
if cbar and logscale:
from matplotlib.ticker import LogLocator
misc["cbar"].set_ticks(LogLocator(base=10.0, subs=range(10)))
# print(np.nonzero(pi)[0])
return fig, ax, misc, min_v, max_v, levels
def _prune_kwargs(kwargs):
"""Remove non-allowed keys from a kwargs dictionary."""
allowed_keys = [
"corner_mask",
"alpha",
"locator",
"extend",
"xunits",
"yunits",
"antialiased",
"nchunk",
"hatches",
"zorder",
]
ignored = [key for key in kwargs.keys() if key not in allowed_keys]
for key in ignored:
print(
"{}={} is not an allowed optional parameter and will" " be ignored".format(
key, kwargs[key]
)
)
kwargs.pop(key, None)
return kwargs
def plot_free_energy_pyemma(
xall,
yall,
weights=None,
ax=None,
nbins=100,
ncontours=100,
offset=-1,
avoid_zero_count=False,
minener_zero=True,
kT=1.0,
vmin=None,
vmax=None,
cmap="nipy_spectral",
cbar=True,
cbar_label="free energy / kT",
cax=None,
levels=None,
legacy=True,
ncountours=None,
cbar_orientation="vertical",
**kwargs,
):
x, y, z = get_histogram(
xall, yall, nbins=nbins, weights=weights, avoid_zero_count=avoid_zero_count
)
f = _to_free_energy(z, minener_zero=minener_zero) * kT
nonzero = f.nonzero()
fig, ax, misc = plot_map(
x,
y,
f,
ax=ax,
cmap=cmap,
ncontours=ncontours,
vmin=vmin,
vmax=vmax,
levels=levels,
cbar=cbar,
cax=cax,
cbar_label=cbar_label,
cbar_orientation=cbar_orientation,
norm=None,
**kwargs,
)
if legacy:
return fig, ax
return fig, ax, misc
return f
def _to_free_energy(z, minener_zero=False):
pi = _to_density(z)
free_energy = np.inf * np.ones(shape=z.shape)
nonzero = pi.nonzero()
free_energy[nonzero] = -np.log(pi[nonzero])
if minener_zero:
free_energy[nonzero] -= np.min(free_energy[nonzero])
return free_energy
def plot_map(
x,
y,
z,
ax=None,
cmap=None,
ncontours=100,
vmin=None,
vmax=None,
levels=None,
cbar=True,
cax=None,
cbar_label=None,
cbar_orientation="vertical",
norm=None,
**kwargs,
):
"""Plot a two-dimensional map from data on a grid."""
import matplotlib.pyplot as _plt
if ax is None:
fig, ax = _plt.subplots()
else:
fig = ax.get_figure()
mappable = ax.contourf(
x,
y,
z,
ncontours,
norm=norm,
vmin=vmin,
vmax=vmax,
cmap=cmap,
levels=levels,
**_prune_kwargs(kwargs),
)
misc = dict(mappable=mappable)
if cbar_orientation not in ("horizontal", "vertical"):
raise ValueError('cbar_orientation must be "horizontal" or "vertical"')
if cbar:
if cax is None:
cbar_ = fig.colorbar(mappable, ax=ax, orientation=cbar_orientation, pad=0.1)
else:
cbar_ = fig.colorbar(
mappable, cax=cax, orientation=cbar_orientation, pad=0.1
)
if cbar_label is not None:
cbar_.set_label(cbar_label)
misc.update(cbar=cbar_)
ax.set_xlabel("TIC 1", fontsize=14)
ax.tick_params(axis="both", which="major", labelsize=14) # Set ticks fontsize to 14
ax.set_ylabel("TIC 2", fontsize=14)
return fig, ax, misc