-
Notifications
You must be signed in to change notification settings - Fork 28
/
swiftformer.py
502 lines (425 loc) · 17.1 KB
/
swiftformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""
SwiftFormer
"""
import os
import copy
import torch
import torch.nn as nn
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_
from timm.models.registry import register_model
from timm.models.layers.helpers import to_2tuple
import einops
SwiftFormer_width = {
'XS': [48, 56, 112, 220],
'S': [48, 64, 168, 224],
'l1': [48, 96, 192, 384],
'l3': [64, 128, 320, 512],
}
SwiftFormer_depth = {
'XS': [3, 3, 6, 4],
'S': [3, 3, 9, 6],
'l1': [4, 3, 10, 5],
'l3': [4, 4, 12, 6],
}
def stem(in_chs, out_chs):
"""
Stem Layer that is implemented by two layers of conv.
Output: sequence of layers with final shape of [B, C, H/4, W/4]
"""
return nn.Sequential(
nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs // 2),
nn.ReLU(),
nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs),
nn.ReLU(), )
class Embedding(nn.Module):
"""
Patch Embedding that is implemented by a layer of conv.
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H/stride, W/stride]
"""
def __init__(self, patch_size=16, stride=16, padding=0,
in_chans=3, embed_dim=768, norm_layer=nn.BatchNorm2d):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
stride=stride, padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
x = self.proj(x)
x = self.norm(x)
return x
class ConvEncoder(nn.Module):
"""
Implementation of ConvEncoder with 3*3 and 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
Output: tensor with shape [B, C, H, W]
"""
def __init__(self, dim, hidden_dim=64, kernel_size=3, drop_path=0., use_layer_scale=True):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=dim)
self.norm = nn.BatchNorm2d(dim)
self.pwconv1 = nn.Conv2d(dim, hidden_dim, kernel_size=1)
self.act = nn.GELU()
self.pwconv2 = nn.Conv2d(hidden_dim, dim, kernel_size=1)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
input = x
x = self.dwconv(x)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.use_layer_scale:
x = input + self.drop_path(self.layer_scale * x)
else:
x = input + self.drop_path(x)
return x
class Mlp(nn.Module):
"""
Implementation of MLP layer with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
Output: tensor with shape [B, C, H, W]
"""
def __init__(self, in_features, hidden_features=None,
out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm1 = nn.BatchNorm2d(in_features)
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.norm1(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class EfficientAdditiveAttnetion(nn.Module):
"""
Efficient Additive Attention module for SwiftFormer.
Input: tensor in shape [B, N, D]
Output: tensor in shape [B, N, D]
"""
def __init__(self, in_dims=512, token_dim=256, num_heads=2):
super().__init__()
self.to_query = nn.Linear(in_dims, token_dim * num_heads)
self.to_key = nn.Linear(in_dims, token_dim * num_heads)
self.w_g = nn.Parameter(torch.randn(token_dim * num_heads, 1))
self.scale_factor = token_dim ** -0.5
self.Proj = nn.Linear(token_dim * num_heads, token_dim * num_heads)
self.final = nn.Linear(token_dim * num_heads, token_dim)
def forward(self, x):
query = self.to_query(x)
key = self.to_key(x)
query = torch.nn.functional.normalize(query, dim=-1) #BxNxD
key = torch.nn.functional.normalize(key, dim=-1) #BxNxD
query_weight = query @ self.w_g # BxNx1 (BxNxD @ Dx1)
A = query_weight * self.scale_factor # BxNx1
A = torch.nn.functional.normalize(A, dim=1) # BxNx1
G = torch.sum(A * query, dim=1) # BxD
G = einops.repeat(
G, "b d -> b repeat d", repeat=key.shape[1]
) # BxNxD
out = self.Proj(G * key) + query #BxNxD
out = self.final(out) # BxNxD
return out
class SwiftFormerLocalRepresentation(nn.Module):
"""
Local Representation module for SwiftFormer that is implemented by 3*3 depth-wise and point-wise convolutions.
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H, W]
"""
def __init__(self, dim, kernel_size=3, drop_path=0., use_layer_scale=True):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=dim)
self.norm = nn.BatchNorm2d(dim)
self.pwconv1 = nn.Conv2d(dim, dim, kernel_size=1)
self.act = nn.GELU()
self.pwconv2 = nn.Conv2d(dim, dim, kernel_size=1)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale = nn.Parameter(torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
input = x
x = self.dwconv(x)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.use_layer_scale:
x = input + self.drop_path(self.layer_scale * x)
else:
x = input + self.drop_path(x)
return x
class SwiftFormerEncoder(nn.Module):
"""
SwiftFormer Encoder Block for SwiftFormer. It consists of (1) Local representation module, (2) EfficientAdditiveAttention, and (3) MLP block.
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H, W]
"""
def __init__(self, dim, mlp_ratio=4.,
act_layer=nn.GELU,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
super().__init__()
self.local_representation = SwiftFormerLocalRepresentation(dim=dim, kernel_size=3, drop_path=0.,
use_layer_scale=True)
self.attn = EfficientAdditiveAttnetion(in_dims=dim, token_dim=dim, num_heads=1)
self.linear = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
def forward(self, x):
x = self.local_representation(x)
B, C, H, W = x.shape
if self.use_layer_scale:
x = x + self.drop_path(
self.layer_scale_1 * self.attn(x.permute(0, 2, 3, 1).reshape(B, H * W, C)).reshape(B, H, W, C).permute(
0, 3, 1, 2))
x = x + self.drop_path(self.layer_scale_2 * self.linear(x))
else:
x = x + self.drop_path(
self.attn(x.permute(0, 2, 3, 1).reshape(B, H * W, C)).reshape(B, H, W, C).permute(0, 3, 1, 2))
x = x + self.drop_path(self.linear(x))
return x
def Stage(dim, index, layers, mlp_ratio=4.,
act_layer=nn.GELU,
drop_rate=.0, drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5, vit_num=1):
"""
Implementation of each SwiftFormer stages. Here, SwiftFormerEncoder used as the last block in all stages, while ConvEncoder used in the rest of the blocks.
Input: tensor in shape [B, C, H, W]
Output: tensor in shape [B, C, H, W]
"""
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
if layers[index] - block_idx <= vit_num:
blocks.append(SwiftFormerEncoder(
dim, mlp_ratio=mlp_ratio,
act_layer=act_layer, drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value))
else:
blocks.append(ConvEncoder(dim=dim, hidden_dim=int(mlp_ratio * dim), kernel_size=3))
blocks = nn.Sequential(*blocks)
return blocks
class SwiftFormer(nn.Module):
def __init__(self, layers, embed_dims=None,
mlp_ratios=4, downsamples=None,
act_layer=nn.GELU,
num_classes=1000,
down_patch_size=3, down_stride=2, down_pad=1,
drop_rate=0., drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
fork_feat=False,
init_cfg=None,
pretrained=None,
vit_num=1,
distillation=True,
**kwargs):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = stem(3, embed_dims[0])
network = []
for i in range(len(layers)):
stage = Stage(embed_dims[i], i, layers, mlp_ratio=mlp_ratios,
act_layer=act_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
vit_num=vit_num)
network.append(stage)
if i >= len(layers) - 1:
break
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
network.append(
Embedding(
patch_size=down_patch_size, stride=down_stride,
padding=down_pad,
in_chans=embed_dims[i], embed_dim=embed_dims[i + 1]
)
)
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
layer = nn.Identity()
else:
layer = nn.BatchNorm2d(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
else:
# Classifier head
self.norm = nn.BatchNorm2d(embed_dims[-1])
self.head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity()
self.dist = distillation
if self.dist:
self.dist_head = nn.Linear(
embed_dims[-1], num_classes) if num_classes > 0 \
else nn.Identity()
# self.apply(self.cls_init_weights)
self.apply(self._init_weights)
self.init_cfg = copy.deepcopy(init_cfg)
# load pre-trained model
if self.fork_feat and (
self.init_cfg is not None or pretrained is not None):
self.init_weights()
# init for mmdetection or mmsegmentation by loading
# imagenet pre-trained weights
def init_weights(self, pretrained=None):
logger = get_root_logger()
if self.init_cfg is None and pretrained is None:
logger.warn(f'No pre-trained weights for '
f'{self.__class__.__name__}, '
f'training start from scratch')
pass
else:
assert 'checkpoint' in self.init_cfg, f'Only support ' \
f'specify `Pretrained` in ' \
f'`init_cfg` in ' \
f'{self.__class__.__name__} '
if self.init_cfg is not None:
ckpt_path = self.init_cfg['checkpoint']
elif pretrained is not None:
ckpt_path = pretrained
ckpt = _load_checkpoint(
ckpt_path, logger=logger, map_location='cpu')
if 'state_dict' in ckpt:
_state_dict = ckpt['state_dict']
elif 'model' in ckpt:
_state_dict = ckpt['model']
else:
_state_dict = ckpt
state_dict = _state_dict
missing_keys, unexpected_keys = \
self.load_state_dict(state_dict, False)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out)
if self.fork_feat:
return outs
return x
def forward(self, x):
x = self.patch_embed(x)
x = self.forward_tokens(x)
if self.fork_feat:
# Output features of four stages for dense prediction
return x
x = self.norm(x)
if self.dist:
cls_out = self.head(x.flatten(2).mean(-1)), self.dist_head(x.flatten(2).mean(-1))
if not self.training:
cls_out = (cls_out[0] + cls_out[1]) / 2
else:
cls_out = self.head(x.flatten(2).mean(-1))
# For image classification
return cls_out
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .95, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'classifier': 'head',
**kwargs
}
@register_model
def SwiftFormer_XS(pretrained=False, **kwargs):
model = SwiftFormer(
layers=SwiftFormer_depth['XS'],
embed_dims=SwiftFormer_width['XS'],
downsamples=[True, True, True, True],
vit_num=1,
**kwargs)
model.default_cfg = _cfg(crop_pct=0.9)
return model
@register_model
def SwiftFormer_S(pretrained=False, **kwargs):
model = SwiftFormer(
layers=SwiftFormer_depth['S'],
embed_dims=SwiftFormer_width['S'],
downsamples=[True, True, True, True],
vit_num=1,
**kwargs)
model.default_cfg = _cfg(crop_pct=0.9)
return model
@register_model
def SwiftFormer_L1(pretrained=False, **kwargs):
model = SwiftFormer(
layers=SwiftFormer_depth['l1'],
embed_dims=SwiftFormer_width['l1'],
downsamples=[True, True, True, True],
vit_num=1,
**kwargs)
model.default_cfg = _cfg(crop_pct=0.9)
return model
@register_model
def SwiftFormer_L3(pretrained=False, **kwargs):
model = SwiftFormer(
layers=SwiftFormer_depth['l3'],
embed_dims=SwiftFormer_width['l3'],
downsamples=[True, True, True, True],
vit_num=1,
**kwargs)
model.default_cfg = _cfg(crop_pct=0.9)
return model