-
Notifications
You must be signed in to change notification settings - Fork 0
/
truck_ling_downloader.py
160 lines (118 loc) · 4.33 KB
/
truck_ling_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import requests
from lxml.html import fromstring
import os
import random as rd
import pickle
from sklearn.feature_extraction.text import CountVectorizer
from fitter_vocab import fitter_age, fitter_modern, fitter_WWII
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
import numpy as np
from sklearn.pipeline import Pipeline
from transliterate import translit
import pickle
labels = []
data_dict = {}
data = []
label = []
vectorizer = CountVectorizer()
with open('modern_tech', 'r') as file:
for line in file:
if len(line) < 3:
continue
line_no_spaces = line.replace(' ', '')
try:
start = int(line_no_spaces[0])
except:
labels.append(line_no_spaces[:-1])
continue
for i in range(len(line)):
if line[i] == ' ':
continue
if line[i] == '.':
line = line[i+2:]
break
data_dict[line[:-1]] = len(labels)
data.append(translit(u"{}".format(line[:-1]), "ru", reversed=True))
label.append(len(labels))
data_vectorised = vectorizer.fit_transform(data)
print(labels)
n_label = np.array(label)
trainX, testX, trainY, testY = train_test_split(data_vectorised, n_label, test_size = 0.2, random_state = 42)
from sklearn.linear_model import SGDClassifier
model_modern = Pipeline([
('clf', SGDClassifier(loss='hinge', penalty='l2',alpha=1e-3, random_state=42, max_iter=3, tol=None)),
])
model_modern.fit(trainX, trainY)
model_age = pickle.load(open('age_model', 'rb'))
model_WWII = pickle.load(open('wwii', 'rb'))
#model_modern = pickle.load(open('modern', 'rb'))
vectorizer_age = CountVectorizer()
vectorizer_age.fit(fitter_age())
vectorizer_modern = CountVectorizer()
vectorizer_modern.fit(fitter_modern())
vectorizer_wwII = CountVectorizer()
vectorizer_wwII.fit(fitter_WWII())
labels_wwII = []
with open('spisok', 'r') as file:
for line in file:
if len(line) < 3:
continue
line_no_spaces = line.replace(' ', '')
try:
start = int(line_no_spaces[0])
except:
labels_wwII.append(line_no_spaces[:-1])
continue
labels_modern = []
with open('modern_tech', 'r') as file:
for line in file:
if len(line) < 3:
continue
line_no_spaces = line.replace(' ', '')
try:
start = int(line_no_spaces[0])
except:
labels_modern.append(line_no_spaces[:-1])
continue
5
#from 10000
for model_page in range(10775, 11001, 1):
print(model_page)
url = "https://www.track-link.com/gallery/{}".format(model_page)
r = requests.get(url)
tree = fromstring(r.content)
path = ' '.join(tree.findtext('.//title').split(' ')[4:]).replace(r'/', ' ')
print(path)
if len(path) < 3: # если в шапке пусто, то скипаем, чтобы не мусорить
continue
what_age = model_age.predict(vectorizer_age.transform([path]))
if what_age == 0:
age = 'WWII'
nation = labels_wwII[model_WWII.predict(vectorizer_wwII.transform([path]))[0] - 1]
else:
age = 'Modern'
nation = labels_modern[model_modern.predict(vectorizer.transform([path]))[0] - 1]
print(age, nation)
print()
dirName = 'truck-link/{0}/{1}/{2}'.format(age, nation, path)
if not os.path.exists('truck-link/{0}/{1}'.format(age, nation)):
os.mkdir('truck-link/{0}/{1}'.format(age, nation))
if not os.path.exists(dirName):
os.mkdir(dirName)
try:
for i in range(10):
image_url = "https://www.track-link.com/gallery/images/b_{0}_{1}.jpg".format(model_page, i)
r = requests.get(image_url)
filename = "truck-link/{0}/{1}/{2}/{3}.jpeg".format(age, nation, path, i)
if os.path.isfile(filename):
filename = 'truck-link/{0}/{1}/{2}/{3}.jpeg'.format(age, nation, path, i + rd.randint(10, 10000))
with open(filename, 'wb') as f:
f.write(r.content)
else:
with open(filename, 'wb') as f:
f.write(r.content)
except:
continue