-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCombinationSum.java
62 lines (53 loc) · 1.9 KB
/
CombinationSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7 and target 7,
A solution set is:
[7]
[2, 2, 3]
*/
import java.io.*;
import java.util.*;
public class CombinationSum {
private static List<List<Integer>> res = new ArrayList<List<Integer>>();
public static List<List<Integer>> combinationSum(int[] candidates, int target) {
if(candidates.length <= 0) return res;
Arrays.sort(candidates);
int L = candidates.length;
comSumRe(candidates, L, 0, target, new ArrayList<Integer>());
return res;
}
public static void comSumRe(int[] candidates, int L, int pos, int target, List<Integer> a){
if(target < 0) return;
if(target == 0){
res.add(new ArrayList<Integer>(a));
return;
}
for(int i = pos; i < candidates.length; i++){
a.add(candidates[i]);
comSumRe(candidates, L, i, target-candidates[i], a);
a.remove(a.size()-1);
}
return;
}
public static void dispArray2D(List<List<Integer>> res){
for(int i = 0; i < res.size(); i++){
for(int j = 0; j < res.get(i).size(); j++){
System.out.print(res.get(i).get(j) + " "); // note: res[i][j]
}
System.out.println();
}
}
public static void main(String[] args) {
int[] can = new int[]{2, 2, 4, 5};
System.out.println("combination sum n");
List<List<Integer>> r = combinationSum(can, 9);
System.out.println("results: ");
dispArray2D(r);
return;
}
}