-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
65 lines (46 loc) · 1.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import matplotlib.pyplot as plt
def load_data(filename):
data = np.loadtxt(filename, delimiter=',')
X = data[:,:2]
y = data[:,2]
return X, y
def sig(z):
return 1/(1+np.exp(-z))
def map_feature(X1, X2):
"""
Feature mapping function to polynomial features
"""
X1 = np.atleast_1d(X1)
X2 = np.atleast_1d(X2)
degree = 6
out = []
for i in range(1, degree+1):
for j in range(i + 1):
out.append((X1**(i-j) * (X2**j)))
return np.stack(out, axis=1)
def plot_data(X, y, pos_label="y=1", neg_label="y=0"):
positive = y == 1
negative = y == 0
# Plot examples
plt.plot(X[positive, 0], X[positive, 1], 'k+', label=pos_label)
plt.plot(X[negative, 0], X[negative, 1], 'yo', label=neg_label)
def plot_decision_boundary(w, b, X, y):
# Credit to dibgerge on Github for this plotting code
plot_data(X[:, 0:2], y)
if X.shape[1] <= 2:
plot_x = np.array([min(X[:, 0]), max(X[:, 0])])
plot_y = (-1. / w[1]) * (w[0] * plot_x + b)
plt.plot(plot_x, plot_y, c="b")
else:
u = np.linspace(-1, 1.5, 50)
v = np.linspace(-1, 1.5, 50)
z = np.zeros((len(u), len(v)))
# Evaluate z = theta*x over the grid
for i in range(len(u)):
for j in range(len(v)):
z[i,j] = sig(np.dot(map_feature(u[i], v[j]), w) + b)
# important to transpose z before calling contour
z = z.T
# Plot z = 0
plt.contour(u,v,z, levels = [0.5], colors="g")