-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsome ai
114 lines (91 loc) · 3.37 KB
/
some ai
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import gym
from gym import spaces
class GoLeftEnv(gym.Env):
"""
Custom Environment that follows gym interface.
This is a simple env where the agent must learn to go always left.
"""
# Because of google colab, we cannot implement the GUI ('human' render mode)
metadata = {'render.modes': ['console']}
# Define constants for clearer code
ATTACK = 0
ATTACK2 = 1
def __init__(self, grid_size=10):
super(GoLeftEnv, self).__init__()
# Size of the 1D-grid
self.grid_size = grid_size
# Initialize the agent at the right of the grid
self.agent_pos = grid_size - 1
self.ghost = 24
self.firstpiratehealth = 10
self.secondpiratehealth = 10
#self.firstpiratehealth = 20
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions, we have two: left and right
n_actions = 2
self.action_space = spaces.Discrete(n_actions)
# The observation will be the coordinate of the agent
# this can be described both by Discrete and Box space
self.observation_space = spaces.Box(low=0, high=self.grid_size,
shape=(1,), dtype=np.float32)
def reset(self):
"""
Important: the observation must be a numpy array
:return: (np.array)
"""
# Initialize the agent at the right of the grid
self.agent_pos = self.grid_size - 1
self.ghost = 24
self.firstpiratehealth = 10
self.secondpiratehealth = 10
# here we convert to float32 to make it more general (in case we want to use continuous actions)
return np.array([self.agent_pos]).astype(np.float32)
def step(self, action):
if action == self.ATTACK:
# self.agent_pos -= 1
self.firstpiratehealth = self.firstpiratehealth - 2
elif action == self.ATTACK2:
self.secondpiratehealth = self.secondpiratehealth - 2
# self.agent_pos += 1
#self.ghost = self.ghost + 2
else:
raise ValueError("Received invalid action={} which is not part of the action space".format(action))
# Account for the boundaries of the grid
self.agent_pos = np.clip(self.agent_pos, 0, self.grid_size)
if self.firstpiratehealth != 0:
self.ghost = self.ghost - 2
else:
self.ghost = self.ghost
if self.secondpiratehealth != 0:
self.ghost = self.ghost - 2
else:
self.ghost = self.ghost
# else
#self.ghost = self.ghost - 2
# Are we at the left of the grid?
#done = bool(self.agent_pos == 0)
if self.ghost == 0:
done = 1
if (self.firstpiratehealth == 0 and self.secondpiratehealth == 0):
done = 1
#done = bool(self.ghost == 0) or (bool(self.firstpiratehealth == 0) or bool(self.secondpiratehealth == 0))
# Null reward everywhere except when reaching the goal (left of the grid)
#reward = 1 if self.agent_pos == 0 else 0
if (self.secondpiratehealth == 0 and self.firstpiratehealth == 0):
reward = 1
else:
reward = 0
# Optionally we can pass additional info, we are not using that for now
info = {}
return np.array([self.agent_pos]).astype(np.float32), reward, done, info
def render(self, mode='console'):
if mode != 'console':
raise NotImplementedError()
#print(self.ghost)
#print("piratetwo")
#print(self.firstpiratehealth)
#print(self.secondpiratehealth)
def close(self):
pass