-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDQN решает это лучше чем PPO
97 lines (85 loc) · 2.99 KB
/
DQN решает это лучше чем PPO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import gym
from gym import spaces
class GoLeftEnv(gym.Env):
"""
Custom Environment that follows gym interface.
This is a simple env where the agent must learn to go always left.
"""
# Because of google colab, we cannot implement the GUI ('human' render mode)
metadata = {'render.modes': ['console']}
# Define constants for clearer code
LEFT = 0
RIGHT = 1
HIGH = 2
LOW = 3
ATTACK = 4
def __init__(self, grid_size=10):
super(GoLeftEnv, self).__init__()
# Size of the 1D-grid
self.grid_size = grid_size
# Initialize the agent at the right of the grid
self.agent_pos = grid_size - 1
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions, we have two: left and right
n_actions = 5
self.action_space = spaces.Discrete(n_actions)
# The observation will be the coordinate of the agent
# this can be described both by Discrete and Box space
self.observation_space = spaces.Box(low=0, high=100,
shape=(3,), dtype=np.float32)
def reset(self):
"""
Important: the observation must be a numpy array
:return: (np.array)
"""
# Initialize the agent at the right of the grid
self.agent_posX = 1
self.agent_posY = 1
self.enemyhealth = 10
# here we convert to float32 to make it more general (in case we want to use continuous actions)
return np.array([self.agent_posX, self.agent_posY, self.enemyhealth]).astype(np.float32)
def step(self, action):
if action == self.LEFT:
if (self.agent_posX == 1):
self.agent_posX = 1
else:
self.agent_posX -= 1
elif action == self.RIGHT:
if (self.agent_posX == 5):
self.agent_posX = 5
else:
self.agent_posX += 1
elif action == self.LOW:
if (self.agent_posY == 1):
self.agent_posY = 1
else:
self.agent_posY -= 1
elif action == self.HIGH:
if (self.agent_posY == 5):
self.agent_posY = 5
else:
self.agent_posY += 1
elif action == self.ATTACK:
if (self.agent_posX == 4 and self.agent_posY == 4):
self.enemyhealth = 0
else:
raise ValueError("Received invalid action={} which is not part of the action space".format(action))
# Are we at the left of the grid?
done = bool(self.enemyhealth == 0)
# Null reward everywhere except when reaching the goal (left of the grid)
reward = 100 if self.enemyhealth == 0 else -1
# Optionally we can pass additional info, we are not using that for now
info = {}
return np.array([self.agent_posX, self.agent_posY, self.enemyhealth]).astype(np.float32), reward, done, info
def render(self, mode='console'):
if mode != 'console':
raise NotImplementedError()
# agent is represented as a cross, rest as a dot
print("Координата X")
print(self.agent_posX)
print("Координата Y")
print(self.agent_posY)
def close(self):
pass