-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathОбучение в Pycharm
139 lines (118 loc) · 4.83 KB
/
Обучение в Pycharm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import gym
from gym import spaces
class GoLeftEnv(gym.Env):
"""
Custom Environment that follows gym interface.
This is a simple env where the agent must learn to go always left.
"""
# Because of google colab, we cannot implement the GUI ('human' render mode)
metadata = {'render.modes': ['console']}
# Define constants for clearer code
ATTACK = 0
ATTACK2 = 1
ATTACK3 = 2
def __init__(self, grid_size=100):
super(GoLeftEnv, self).__init__()
# Size of the 1D-grid
self.grid_size = grid_size
# Initialize the agent at the right of the grid
self.agent_pos = grid_size - 1
self.ghost = 70
self.firstpiratehealth = 10
self.secondpiratehealth = 10
self.thirdpiratehealth = 10
# Define action and observation space
# They must be gym.spaces objects
# Example when using discrete actions, we have two: left and right
n_actions = 3
self.action_space = spaces.Discrete(n_actions)
# The observation will be the coordinate of the agent
# this can be described both by Discrete and Box space
self.observation_space = spaces.Box(low=-100, high=100,
shape=(4,), dtype=np.float32)
def reset(self):
"""
Important: the observation must be a numpy array
:return: (np.array)
"""
# Initialize the agent at the right of the grid
# self.agent_pos = self.grid_size - 1
self.ghost = 64
self.firstpiratehealth = 10
self.secondpiratehealth = 10
self.thirdpiratehealth = 10
# here we convert to float32 to make it more general (in case we want to use continuous actions)
return np.array([self.ghost, self.firstpiratehealth, self.secondpiratehealth, self.thirdpiratehealth]).astype(
np.float32)
def step(self, action):
if action == self.ATTACK:
# self.agent_pos -= 1
self.firstpiratehealth = self.firstpiratehealth - 2
elif action == self.ATTACK2:
self.secondpiratehealth = self.secondpiratehealth - 2
elif action == self.ATTACK3:
self.thirdpiratehealth = self.thirdpiratehealth - 2
# self.agent_pos += 1
# self.ghost = self.ghost + 2
else:
raise ValueError("Received invalid action={} which is not part of the action space".format(action))
if self.firstpiratehealth > 0:
self.ghost = self.ghost - 2
else:
self.ghost = self.ghost
if self.secondpiratehealth > 0:
self.ghost = self.ghost - 2
else:
self.ghost = self.ghost
if self.thirdpiratehealth > 0:
self.ghost = self.ghost - 2
else:
self.ghost = self.ghost
done = bool((
self.secondpiratehealth <= 0 and self.firstpiratehealth <= 0 and self.thirdpiratehealth <= 0) or self.ghost <= 0)
if (
self.secondpiratehealth <= 0 and self.firstpiratehealth <= 0 and self.thirdpiratehealth <= 0 and self.ghost > 0):
reward = 100
else:
reward = 0
# Optionally we can pass additional info, we are not using that for now
info = {}
return np.array([self.ghost, self.firstpiratehealth, self.secondpiratehealth, self.thirdpiratehealth]).astype(
np.float32), reward, done, info
def render(self, mode='console'):
print("Здоровье призрака - ")
print(self.ghost)
print("Здоровье первого пирата - ")
print(self.firstpiratehealth)
print("Здоровье второго пирата - ")
print(self.secondpiratehealth)
print("Здоровье третьего пирата - ")
print(self.thirdpiratehealth)
if mode != 'console':
raise NotImplementedError()
def close(self):
pass
from stable_baselines3 import DQN, A2C, HER, TD3
from stable_baselines3.common.env_util import make_vec_env
# Instantiate the env
env = GoLeftEnv(grid_size=100)
# wrap it
env = make_vec_env(lambda: env, n_envs=1)
# Train the agent (запуск обучения, рекоммендую не менее 50к шагов)
model = DQN("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=200000)
obs = env.reset()
n_steps = 40
for step in range(n_steps):
action, _ = model.predict(obs, deterministic=True)
print("Step {}".format(step + 1))
print("Action: ", action)
obs, reward, done, info = env.step(action)
print('obs=', obs, 'reward=', reward, 'done=', done)
env.render(mode='console')
if done:
# Note that the VecEnv resets automatically
# when a done signal is encountered
print("Goal reached!", "reward=", reward)
break