-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.nf
340 lines (292 loc) · 12.7 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/usr/bin/env nextflow
nextflow.enable.dsl=2
// 10X barcode files
cell_barcodes = [
'10Xv2': '737K-august-2016.txt',
'10Xv2_5prime': '737K-august-2016.txt',
'10Xv3': '3M-february-2018.txt',
'10Xv3.1': '3M-february-2018.txt',
'CITEseq_10Xv2': '737K-august-2016.txt',
'CITEseq_10Xv3': '3M-february-2018.txt',
'CITEseq_10Xv3.1': '3M-february-2018.txt',
'cellhash_10Xv2': '737K-august-2016.txt',
'cellhash_10Xv3': '3M-february-2018.txt',
'cellhash_10Xv3.1': '3M-february-2018.txt'
]
// supported technologies
single_cell_techs = cell_barcodes.keySet()
bulk_techs = ['single_end', 'paired_end']
spatial_techs = ['visium']
all_techs = single_cell_techs + bulk_techs + spatial_techs
rna_techs = single_cell_techs.findAll{it.startsWith('10Xv')}
citeseq_techs = single_cell_techs.findAll{it.startsWith('CITEseq')}
cellhash_techs = single_cell_techs.findAll{it.startsWith('cellhash')}
// report template paths
report_template_dir = file("${projectDir}/templates/qc_report", type: 'dir', checkIfExists: true)
report_template_file = "main_qc_report.rmd"
celltype_report_template_file = "celltypes_supplemental_report.rmd"
report_template_tuple = tuple(report_template_dir, report_template_file, celltype_report_template_file)
// include processes from modules
include { map_quant_rna } from './modules/af-rna.nf'
include { map_quant_feature } from './modules/af-features.nf'
include { bulk_quant_rna } from './modules/bulk-salmon.nf'
include { genetic_demux_vireo } from './modules/genetic-demux.nf'
include { spaceranger_quant } from './modules/spaceranger.nf'
include { generate_sce; generate_merged_sce; cellhash_demux_sce; genetic_demux_sce; post_process_sce} from './modules/sce-processing.nf'
include { cluster_sce } from './modules/cluster-sce.nf'
include { annotate_celltypes } from './modules/classify-celltypes.nf'
include { sce_qc_report } from './modules/qc-report.nf'
include { sce_to_anndata } from './modules/export-anndata.nf'
// parameter checks
param_error = false
if (!file(params.run_metafile).exists()) {
log.error("The 'run_metafile' file '${params.run_metafile}' can not be found.")
param_error = true
}
sample_metafile = file(params.sample_metafile) // we make this for passing into later processes
if (!sample_metafile.exists()) {
log.error("The 'sample_metafile' file '${params.sample_metafile}' can not be found.")
param_error = true
}
if (!sample_metafile.exists()) {
log.error("The 'sample_metafile' file '${params.sample_metafile}' can not be found.")
param_error = true
}
resolution_strategies = ['cr-like', 'full', 'cr-like-em', 'parsimony', 'trivial']
if (!resolution_strategies.contains(params.af_resolution)) {
log.error("'af_resolution' must be one of the following: ${resolution_strategies}")
param_error = true
}
if (params.cellhash_pool_file && !file(params.cellhash_pool_file).exists()){
log.error("The 'cellhash_pool_file' file ${params.cellhash_pool_file} can not be found.")
param_error = true
}
// QC report check
if (!file("${projectDir}/templates/qc_report/${report_template_file}").exists()) {
log.error("The 'report_template_file' file '${report_template_file}' can not be found.")
param_error = true
}
// cell type annotation file checks
if (params.perform_celltyping) {
if (!file(params.project_celltype_metafile).exists()) {
log.error("The 'project_celltype_metafile' file '${params.project_celltype_metafile}' can not be found.")
param_error = true
}
if (!file(params.celltype_ref_metadata).exists()) {
log.error("The 'celltype_ref_metadata' file '${params.celltype_ref_metadata}' can not be found.")
param_error = true
}
if (!file("${projectDir}/templates/qc_report/${celltype_report_template_file}").exists()) {
log.error("The 'celltype_report_template_file' file '${celltype_report_template_file}' can not be found.")
param_error = true
}
}
if (param_error) {
System.exit(1)
}
// Main workflow
workflow {
// select runs to use
if (params.project) {
// projects will use all runs in the project & supersede run_ids
run_ids = []
// allow for processing of multiple projects at once
project_ids = params.project?.tokenize(',') ?: []
} else {
run_ids = params.run_ids?.tokenize(',') ?: []
project_ids = []
}
run_all = run_ids[0] == "All"
if (run_all) {
log.info("Executing workflow for all runs in the run metafile.")
}
ref_paths = Utils.readMeta(file(params.ref_json))
unfiltered_runs_ch = Channel.fromPath(params.run_metafile)
.splitCsv(header: true, sep: '\t')
.filter{it.sample_reference in ref_paths}
// convert row data to a metadata map, keeping columns we will need (& some renaming) and reference paths
.map{
def sample_refs = ref_paths[it.sample_reference];
[
run_id: it.scpca_run_id,
library_id: it.scpca_library_id,
sample_id: it.scpca_sample_id.split(";").sort().join(","),
project_id: Utils.parseNA(it.scpca_project_id)?: "no_project",
submitter: Utils.parseNA(it.submitter),
technology: it.technology,
assay_ontology_term_id: Utils.parseNA(it.assay_ontology_term_id),
seq_unit: it.seq_unit,
submitter_cell_types_file: Utils.parseNA(it.submitter_cell_types_file),
feature_barcode_file: Utils.parseNA(it.feature_barcode_file),
feature_barcode_geom: Utils.parseNA(it.feature_barcode_geom),
files_directory: Utils.parseNA(it.files_directory),
slide_serial_number: Utils.parseNA(it.slide_serial_number),
slide_section: Utils.parseNA(it.slide_section),
ref_assembly: it.sample_reference,
ref_fasta: params.ref_rootdir + "/" + sample_refs["ref_fasta"],
ref_fasta_index: params.ref_rootdir + "/" + sample_refs["ref_fasta_index"],
ref_gtf: params.ref_rootdir + "/" + sample_refs["ref_gtf"],
salmon_splici_index: params.ref_rootdir + "/" + sample_refs["splici_index"],
t2g_3col_path: params.ref_rootdir + "/" + sample_refs["t2g_3col_path"],
mito_file: params.ref_rootdir + "/" + sample_refs["mito_file"],
salmon_bulk_index: params.ref_rootdir + "/" + sample_refs["salmon_bulk_index"],
t2g_bulk_path: params.ref_rootdir + "/" + sample_refs["t2g_bulk_path"],
cellranger_index: params.ref_rootdir + "/" + sample_refs["cellranger_index"],
star_index: params.ref_rootdir + "/" + sample_refs["star_index"],
scpca_version: workflow.revision ?: workflow.manifest.version,
nextflow_version: nextflow.version.toString()
]
}
runs_ch = unfiltered_runs_ch
// only technologies we know how to process
.filter{it.technology in all_techs}
// use only the rows in the run_id list (run, library, or sample can match)
// or run by project or submitter if the project parameter is set
.filter{
run_all
|| (it.run_id in run_ids)
|| (it.library_id in run_ids)
|| (it.sample_id in run_ids)
|| (it.submitter in project_ids)
|| (it.project_id in project_ids)
}
.branch{
bulk: it.technology in bulk_techs
feature: (it.technology in citeseq_techs) || (it.technology in cellhash_techs)
rna: it.technology in rna_techs
spatial: it.technology in spatial_techs
}
// generate lists of library ids for feature libraries & RNA-only
feature_libs = runs_ch.feature
.collect{it.library_id}
rna_only_libs = runs_ch.rna
.filter{!(it.library_id in feature_libs.getVal())}
.collect{it.library_id}
multiplex_libs = runs_ch.rna
.filter{it.sample_id.contains(",")}
.collect{it.library_id}
// get list of samples with bulk RNA-seq
bulk_samples = runs_ch.bulk
.collect{it.sample_id}
// get genetic multiplex libs with all bulk samples present
genetic_multiplex_libs = runs_ch.rna
.filter{!params.skip_genetic_demux} // empty channel if skipping genetic demux
.filter{it.sample_id.contains(",")}
.filter{it.sample_id.tokenize(",").every{it in bulk_samples.getVal()}}
.collect{it.library_id}
// **** Process Bulk RNA-seq data ***
bulk_quant_rna(runs_ch.bulk)
// **** Process RNA-seq data ****
map_quant_rna(runs_ch.rna, cell_barcodes)
// get RNA-only libraries
rna_quant_ch = map_quant_rna.out
.filter{it[0]["library_id"] in rna_only_libs.getVal()}
// make rds for rna only
rna_sce_ch = generate_sce(rna_quant_ch, sample_metafile)
// only continue processing any samples with > 0 cells left after filtering
.branch{
continue_processing: it[2].size() > 0 || it[2].name.startsWith("STUBL")
skip_processing: true
}
// send library ids in rna_sce_ch.skip_processing to log
rna_sce_ch.skip_processing
.subscribe{
log.error("There are no cells found in the filtered object for ${it[0].library_id}.")
}
// **** Process feature data ****
map_quant_feature(runs_ch.feature, cell_barcodes)
// join feature & RNA quants for feature reads
feature_rna_quant_ch = map_quant_feature.out
.map{[it[0]["library_id"]] + it } // add library_id from metadata as first element
// join rna quant to feature quant by library_id; expect mismatches for rna-only, so don't fail
.join(map_quant_rna.out.map{[it[0]["library_id"]] + it },
by: 0, failOnDuplicate: true, failOnMismatch: false)
.map{it.drop(1)} // remove library_id index
// make rds for merged RNA and feature quants
all_feature_ch = generate_merged_sce(feature_rna_quant_ch, sample_metafile)
.branch{
continue_processing: it[2].size() > 0 || it[2].name.startsWith("STUB")
skip_processing: true
}
// send library ids in all_feature_ch.skip_processing to log
all_feature_ch.skip_processing
.subscribe{
log.error("There are no cells found in the filtered object for ${it[0].library_id}.")
}
// pull out cell hash libraries for demuxing
feature_sce_ch = all_feature_ch.continue_processing
.branch{ // branch cellhash libs
cellhash: it[0]["feature_meta"]["technology"] in cellhash_techs
single: true
}
// apply cellhash demultiplexing
cellhash_demux_ch = cellhash_demux_sce(feature_sce_ch.cellhash, file(params.cellhash_pool_file))
merged_sce_ch = cellhash_demux_ch.mix(feature_sce_ch.single)
// join SCE outputs and branch by genetic multiplexing
sce_ch = rna_sce_ch.continue_processing.mix(merged_sce_ch)
.branch{
genetic_multiplex: it[0]["library_id"] in genetic_multiplex_libs.getVal()
no_genetic: true
}
// **** Perform Genetic Demultiplexing ****
genetic_multiplex_run_ch = runs_ch.rna
.filter{it.library_id in genetic_multiplex_libs.getVal()}
genetic_demux_vireo(genetic_multiplex_run_ch, unfiltered_runs_ch, cell_barcodes, bulk_techs)
// join demux result with SCE output (fail if there are any missing or extra libraries)
// output structure: [meta_demux, vireo_dir, meta_sce, sce_rds]
demux_results_ch = genetic_demux_vireo.out
.map{[it[0]["library_id"]] + it }
.join(sce_ch.genetic_multiplex.map{[it[0]["library_id"]] + it },
by: 0, failOnDuplicate: true, failOnMismatch: true)
.map{it.drop(1)}
// add genetic demux results to sce objects
genetic_demux_sce(demux_results_ch)
// **** Post processing and generate QC reports ****
// combine all SCE outputs
// Make channel for all library sce files
all_sce_ch = sce_ch.no_genetic.mix(genetic_demux_sce.out)
post_process_sce(all_sce_ch)
post_process_ch = post_process_sce.out
// only continue processing any samples with > 0 cells left after processing
.branch{
continue_processing: it[3].size() > 0 || it[3].name.startsWith("STUB")
skip_processing: true
}
// send library ids in post_process_ch.skip_processing to log
post_process_ch.skip_processing
.subscribe{
log.error("There are no cells found in the processed object for ${it[0].library_id}.")
}
// Cluster SCE
cluster_sce(post_process_ch.continue_processing)
if (params.perform_celltyping) {
// Perform celltyping, if specified
annotated_celltype_ch = annotate_celltypes(cluster_sce.out)
} else {
annotated_celltype_ch = cluster_sce.out
}
// first mix any skipped libraries from both rna and feature libs
no_filtered_ch = rna_sce_ch.skip_processing.mix(all_feature_ch.skip_processing)
// add a fake processed file
.map{meta, unfiltered, filtered -> tuple(
meta,
unfiltered,
filtered,
"${projectDir}/assets/NO_FILE"
)}
// combine back with libraries that skipped filtering and post processing
sce_output_ch = annotated_celltype_ch.mix(post_process_ch.skip_processing)
.mix(no_filtered_ch)
// generate QC reports
sce_qc_report(
sce_output_ch,
report_template_tuple
)
// convert SCE object to anndata
anndata_ch = sce_qc_report.out.data
// skip multiplexed libraries
.filter{!(it[0]["library_id"] in multiplex_libs.getVal())}
sce_to_anndata(anndata_ch)
// **** Process Spatial Transcriptomics data ****
spaceranger_quant(runs_ch.spatial)
}