-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_image.py
59 lines (42 loc) · 1.83 KB
/
demo_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import tensorflow as tf
import click
import cv2
import numpy as np
import importlib
from estimation.config import get_default_configuration
from estimation.coordinates import get_coordinates
from estimation.connections import get_connections
from estimation.estimators import estimate
from estimation.renderers import draw
from train_singlenet_mobilenetv3 import register_tf_netbuilder_extensions
@click.command()
@click.option('--image', required=True,
help='Path to the input image file')
@click.option('--output-image', required=True,
help='Path to the output image file')
@click.option('--create-model-fn', required=True,
help='Name of a function to create model instance. Check available names here: .models._init__.py')
@click.option('--paf-idx', default=2,
help='Index of model''s output containing PAF')
@click.option('--heatmap-idx', default=3,
help='Index of model''s output containing heatmap')
def main(image, output_image, create_model_fn, paf_idx, heatmap_idx):
register_tf_netbuilder_extensions()
module = importlib.import_module('models')
create_model = getattr(module, create_model_fn)
model = create_model(pretrained=True)
img = cv2.imread(image) # B,G,R order
input_img = img[np.newaxis, :, :, [2, 1, 0]]
inputs = tf.convert_to_tensor(input_img)
outputs = model.predict(inputs)
pafs = outputs[paf_idx][0, ...]
heatmaps = outputs[heatmap_idx][0, ...]
cfg = get_default_configuration()
coordinates = get_coordinates(cfg, heatmaps)
connections = get_connections(cfg, coordinates, pafs)
skeletons = estimate(cfg, connections)
output = draw(cfg, img, coordinates, skeletons, resize_fac=8)
cv2.imwrite(output_image, output)
print(f"Output saved: {output_image}")
if __name__ == '__main__':
main()