Skip to content

Latest commit

 

History

History
53 lines (40 loc) · 1.86 KB

README.md

File metadata and controls

53 lines (40 loc) · 1.86 KB

Welcome to wrapped-ml

wrapped-ml is a machine learning library that wraps Keras, Scikit-learn and XGBoost into a common framework.

NB this package is in development elsewhere and updates will be posted to this repository sparingly, as they finish. In the meantime, feel free to use what's here!


Usage

Some brief example usage for a classifier:

# Import type of model you want to use e.g. ClassifierNNClass, ClassifierSklearnClass or custom (as here).
from ExampleNNClassifierClass import ExampleNNClassifierClass

# We will build NN Classifier, let's specify the architecture as a list of layer names and their params
network_architecture: list = [('Dense', {'units': 8, 'activation': 'relu'}),
                              ('Dropout', {'rate': 0.1}),
                              ('Dense', {'units': 1, 'activation': 'sigmoid'})]
# Build params that are passed to the base model (Note, you'll also have to specify input shape)
network_input_data: dict = {'network_architecture': network_architecture}
# This example class takes a string as a dummy example custom input
dummy_input: str = "test"

# Build the classifier
my_classifier = ExampleNNClassifierClass(dummy_input, network_input_data)

# Build and train the model using a test and train Dataframe
my_classifier.train_model(train_df=some_train_df, test_df=some_test_df)

# Optionally calibrate probabilties (dont use training data!)
my_classifier.calibrate_probabilities(x_data, y_data)

# Evaluate on some validation data, with orptional parameters in Dict: testing_func_args
my_classifier.evaluate_on_test_data(validation_input, validation_output, testing_args=testing_func_args)

# Make a prediction
predictions = my_classifier.predict(new_observations)

Dependencies

  • Python 3.x
  • dill~=0.3.3
  • joblib~=1.0.1
  • matplotlib~=3.4.2
  • numpy~=1.19.5
  • scikit-learn~=0.24.2
  • tensorflow~=2.5.0
  • xgboost~=1.4.2