-
Notifications
You must be signed in to change notification settings - Fork 1
/
custom_dataset_dcgan.py
155 lines (125 loc) · 5.18 KB
/
custom_dataset_dcgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 22 02:32:42 2017
@author: hans
"""
from __future__ import print_function, division
import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torchvision import datasets
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
# Setting some hyperparameters
batchSize = 64 # We set the size of the batch.
imageSize = 64 # We set the size of the generated images (64x64).
# Creating the transformations
transform = transforms.Compose([transforms.Scale(imageSize), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]) # We create a list of transformations (scaling, tensor conversion, normalization) to apply to the input images.
hans_dataset = datasets.ImageFolder(root = 'data', transform = transform)
dataloader = torch.utils.data.DataLoader(hans_dataset, batch_size = batchSize, shuffle = True, num_workers = 2)
# Defining the weights_init function that takes as input a neural network m and that will initialize all its weights.
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# Defining the generator
class G(nn.Module):
def __init__(self):
super(G, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(100, 512, 4, 1, 0, bias = False),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias = False),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, 2, 1, bias = False),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, 2, 1, bias = False),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, 3, 4, 2, 1, bias = False),
nn.Tanh()
)
def forward(self, input):
output = self.main(input)
return output
# Creating the generator
netG = G()
netG.apply(weights_init)
# Defining the discriminator
class D(nn.Module):
def __init__(self):
super(D, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, 64, 4, 2, 1, bias = False),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(64, 128, 4, 2, 1, bias = False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(128, 256, 4, 2, 1, bias = False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(256, 512, 4, 2, 1, bias = False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace = True),
nn.Conv2d(512, 1, 4, 1, 0, bias = False),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input)
return output.view(-1)
netD = D()
netD.apply(weights_init)
criterion = nn.BCELoss()
optimizerD = optim.Adam(netD.parameters(), lr = 0.0002, betas = (0.5, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr = 0.0002, betas = (0.5, 0.999))
for epoch in range(60):
for i, data in enumerate(dataloader, 0):
# 1st Step: Updating the weights of the neural network of the discriminator
netD.zero_grad()
# Training the discriminator with a real image of the dataset
real, _ = data
input = Variable(real)
target = Variable(torch.ones(input.size()[0]))
output = netD(input)
errD_real = criterion(output, target)
# Training the discriminator with a fake image generated by the generator
noise = Variable(torch.randn(input.size()[0], 100, 1, 1))
fake = netG(noise)
target = Variable(torch.zeros(input.size()[0]))
output = netD(fake.detach())
errD_fake = criterion(output, target)
# Backpropagating the total error
errD = errD_real + errD_fake
errD.backward()
optimizerD.step()
# 2nd Step: Updating the weights of the neural network of the generator
netG.zero_grad()
target = Variable(torch.ones(input.size()[0]))
output = netD(fake)
errG = criterion(output, target)
errG.backward()
optimizerG.step()
# 3rd Step: Printing the losses and saving the real images and the generated images of the minibatch every 100 steps
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f' % (epoch, 60, i, len(dataloader), errD.data[0], errG.data[0]))
if i % 100 == 0:
vutils.save_image(real, '%s/real_samples.png' % "./results", normalize = True)
fake = netG(noise)
vutils.save_image(fake.data, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize = True)