-
Notifications
You must be signed in to change notification settings - Fork 0
/
o1_ollama.py
169 lines (134 loc) · 7.62 KB
/
o1_ollama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import json
import time
import requests # Add this import for making HTTP requests to Ollama
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Get configuration from .env file
OLLAMA_URL = os.getenv('OLLAMA_URL', 'http://localhost:11434')
OLLAMA_MODEL = os.getenv('OLLAMA_MODEL', 'llama3.1')
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = requests.post(
f"{OLLAMA_URL}/api/chat",
json={
"model": OLLAMA_MODEL,
"messages": messages,
"stream": False,
"options": {
"num_predict": max_tokens,
"temperature": 0.2
}
}
)
response.raise_for_status()
return json.loads(response.json()["message"]["content"])
except Exception as e:
if attempt == 2:
if is_final_answer:
return {"title": "Error",
"content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {str(e)}",
"next_action": "final_answer"}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{"role": "system", "content": """You are an advanced AI reasoning assistant tasked with delivering a comprehensive analysis of a specific problem or question. Your goal is to outline your reasoning process in a structured and transparent manner, with each step reflecting a thorough examination of the issue at hand, culminating in a well-reasoned conclusion.
### Structure for Each Reasoning Step:
1. **Title**: Clearly label the phase of reasoning you are currently in.
2. **Content**: Provide a detailed account of your thought process, explaining your rationale and the steps taken to arrive at your conclusions.
3. **Next Action**: Decide whether to continue with further reasoning or if you are ready to provide a final answer.
### Response Format:
Please return the results in the following JSON format:
- `title`: A brief label for the current reasoning phase.
- `content`: An in-depth explanation of your reasoning process for this step.
- `next_action`: Choose `'continue'` to proceed with further reasoning or `'final_answer'` to conclude.
### Key Instructions:
1. Conduct **at least 5 distinct reasoning steps**, each building on the previous one.
2. **Acknowledge the limitations** inherent to AI, specifically what you can accurately assess and what you may struggle with.
3. **Adopt multiple reasoning frameworks** to resolve the problem or derive conclusions, such as:
- **Deductive reasoning** (drawing specific conclusions from general principles)
- **Inductive reasoning** (deriving broader generalizations from specific observations)
- **Abductive reasoning** (choosing the best possible explanation for the given evidence)
- **Analogical reasoning** (solving problems through comparisons and analogies)
4. **Critically analyze your reasoning** to identify potential flaws, biases, or gaps in logic.
5. When reviewing, apply a **fundamentally different perspective or approach** to enhance your analysis.
6. **Employ at least 2 distinct reasoning methods** to derive or verify the accuracy of your conclusions.
7. **Incorporate relevant domain knowledge** and **best practices** where applicable, ensuring your reasoning aligns with established standards.
8. **Quantify certainty levels** for each step and your final conclusion, where applicable.
9. Consider potential **edge cases or exceptions** that could impact the outcome of your reasoning.
10. Provide **clear justifications** for dismissing alternative hypotheses or solutions that arise during your analysis.
### Example JSON Output:
```json
{
"title": "Initial Problem Analysis",
"content": "To approach this problem effectively, I'll first break down the given information into key components. This involves identifying... [detailed explanation]... By structuring the problem in this way, we can systematically address each aspect.",
"next_action": "continue"
}
```
"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data['next_action'] == 'final_answer':
break
step_count += 1
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data['content'], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="ol1 prototype - Ollama version", page_icon="🧠", layout="wide")
st.title("ol1: Using Ollama to create o1-like reasoning chains")
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Ollama so that the reasoning step is local!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/Ai-trainee/o1-flow)
""")
st.markdown(f"**Current Configuration:**")
st.markdown(f"- Ollama URL: `{OLLAMA_URL}`")
st.markdown(f"- Ollama Model: `{OLLAMA_MODEL}`")
# Text input for user query
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
else:
with st.expander(title, expanded=True):
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
if __name__ == "__main__":
main()