-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrainnet.py
830 lines (720 loc) · 36.5 KB
/
rainnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
"""
RainNet-based harmonization model
Adapted from https://github.com/junleen/RainNet
"""
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import functools
from torch.optim import lr_scheduler
from torch.nn.utils import spectral_norm
class RAIN(nn.Module):
def __init__(self, dims_in, eps=1e-5):
'''Compute the instance normalization within only the background region, in which
the mean and standard variance are measured from the features in background region.
'''
super(RAIN, self).__init__()
self.foreground_gamma = nn.Parameter(torch.zeros(dims_in), requires_grad=True)
self.foreground_beta = nn.Parameter(torch.zeros(dims_in), requires_grad=True)
self.background_gamma = nn.Parameter(torch.zeros(dims_in), requires_grad=True)
self.background_beta = nn.Parameter(torch.zeros(dims_in), requires_grad=True)
self.eps = eps
def forward(self, x, mask):
mask = F.interpolate(mask.detach(), size=x.size()[2:], mode='nearest')
mean_back, std_back = self.get_foreground_mean_std(x * (1-mask), 1 - mask) # the background features
normalized = (x - mean_back) / std_back
normalized_background = (normalized * (1 + self.background_gamma[None, :, None, None]) +
self.background_beta[None, :, None, None]) * (1 - mask)
mean_fore, std_fore = self.get_foreground_mean_std(x * mask, mask) # the background features
normalized = (x - mean_fore) / std_fore * std_back + mean_back
normalized_foreground = (normalized * (1 + self.foreground_gamma[None, :, None, None]) +
self.foreground_beta[None, :, None, None]) * mask
return normalized_foreground + normalized_background
def get_foreground_mean_std(self, region, mask):
sum = torch.sum(region, dim=[2, 3]) # (B, C)
num = torch.sum(mask, dim=[2, 3]) # (B, C)
mu = sum / (num + self.eps)
mean = mu[:, :, None, None]
var = torch.sum((region + (1 - mask)*mean - mean) ** 2, dim=[2, 3]) / (num + self.eps)
var = var[:, :, None, None]
return mean, torch.sqrt(var+self.eps)
class Identity(nn.Module):
def forward(self, x):
return x
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
norm_type = norm_type.lower()
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == 'none':
norm_layer = lambda x: Identity()
elif norm_type.startswith('rain'):
norm_layer = RAIN
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False,
init_type='normal', init_gain=0.02, gpu_ids=[]):
"""load a generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
ngf (int) -- the number of filters in the last conv layer
netG (str) -- the architecture's name: rainnet
norm (str) -- the name of normalization layers used in the network: batch | instance | none
use_dropout (bool) -- if use dropout layers.
init_type (str) -- the name of our initialization method.
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
"""
norm_layer = get_norm_layer(norm_type=norm)
if netG == 'rainnet':
net = RainNet(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, use_attention=True)
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
return init_net(net, init_type, init_gain, gpu_ids)
def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Create a discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the first conv layer
netD (str) -- the architecture's name: basic | n_layers | pixel
n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
norm (str) -- the type of normalization layers used in the network.
init_type (str) -- the name of the initialization method.
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
"""
norm_layer = get_norm_layer(norm_type=norm)
if netD == 'basic': # default PatchGAN classifier
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
elif netD == 'n_layers': # more options
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
elif netD == 'pixel': # classify if each pixel is real or fake
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
return init_net(net, init_type, init_gain, gpu_ids)
def get_scheduler(optimizer, opt):
"""Return a learning rate scheduler
Parameters:
optimizer -- the optimizer of the network
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions.
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
For 'linear', we keep the same learning rate for the first <opt.niter> epochs
and linearly decay the rate to zero over the next <opt.niter_decay> epochs.
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
See https://pytorch.org/docs/stable/optim.html for more details.
"""
if opt.lr_policy == 'linear':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.niter, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
self.relu = nn.ReLU()
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
"""Create label tensors with the same size as the input.
Parameters:
prediction (tensor) - - tpyically the prediction from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
A label tensor filled with ground truth label, and with the size of the input
"""
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)
def __call__(self, prediction, target_is_real):
"""Calculate loss given Discriminator's output and grount truth labels.
Parameters:
prediction (tensor) - - tpyically the prediction output from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
the calculated loss.
"""
if self.gan_mode in ['lsgan', 'vanilla']:
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean() # self.relu(1-prediction.mean())
else:
loss = prediction.mean() # self.relu(1+prediction.mean())
return loss
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0, mask=None):
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
Arguments:
netD (network) -- discriminator network
real_data (tensor array) -- real images
fake_data (tensor array) -- generated images from the generator
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
type (str) -- if we mix real and fake data or not [real | fake | mixed].
constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2
lambda_gp (float) -- weight for this loss
Returns the gradient penalty loss
"""
if lambda_gp > 0.0:
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
interpolatesv = real_data
elif type == 'fake':
interpolatesv = fake_data
elif type == 'mixed':
alpha = torch.rand(real_data.shape[0], 1, device=device)
alpha = alpha.unsqueeze(2).unsqueeze(3)
alpha = alpha.expand_as(real_data)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError('{} not implemented'.format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv, mask, gp=True)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True,
allow_unused=True)
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
def get_act_conv(act, dims_in, dims_out, kernel, stride, padding, bias):
conv = [act]
conv.append(nn.Conv2d(dims_in, dims_out, kernel_size=kernel, stride=stride, padding=padding, bias=bias))
return nn.Sequential(*conv)
def get_act_dconv(act, dims_in, dims_out, kernel, stride, padding, bias):
conv = [act]
conv.append(nn.ConvTranspose2d(dims_in, dims_out, kernel_size=kernel, stride=2, padding=1, bias=False))
return nn.Sequential(*conv)
class RainNet(nn.Module):
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=RAIN,
norm_type_indicator=[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
use_dropout=False, use_attention=True):
super(RainNet, self).__init__()
self.input_nc = input_nc
self.norm_namebuffer = ['RAIN']
self.use_dropout = use_dropout
self.use_attention = use_attention
norm_type_list = [get_norm_layer('instance'), norm_layer]
# -------------------------------Network Settings-------------------------------------
self.model_layer0 = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1, bias=False)
self.model_layer1 = get_act_conv(nn.LeakyReLU(0.2, True), ngf, ngf*2, 4, 2, 1, False)
self.model_layer1norm = norm_type_list[norm_type_indicator[0]](ngf*2)
self.model_layer2 = get_act_conv(nn.LeakyReLU(0.2, True), ngf*2, ngf*4, 4, 2, 1, False)
self.model_layer2norm = norm_type_list[norm_type_indicator[1]](ngf*4)
self.model_layer3 = get_act_conv(nn.LeakyReLU(0.2, True), ngf*4, ngf*8, 4, 2, 1, False)
self.model_layer3norm = norm_type_list[norm_type_indicator[2]](ngf*8)
unet_block = UnetBlockCodec(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
innermost=True, enc=norm_type_indicator[6], dec=norm_type_indicator[7]) # add the innermost layer
unet_block = UnetBlockCodec(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer,
use_dropout=use_dropout, enc=norm_type_indicator[5], dec=norm_type_indicator[8])
unet_block = UnetBlockCodec(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer,
use_dropout=use_dropout, enc=norm_type_indicator[4], dec=norm_type_indicator[9])
self.unet_block = UnetBlockCodec(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer,
use_dropout=use_dropout, enc=norm_type_indicator[3], dec=norm_type_indicator[10])
self.model_layer11 = get_act_dconv(nn.ReLU(True), ngf*16, ngf*4, 4, 2, 1, False)
self.model_layer11norm = norm_type_list[norm_type_indicator[11]](ngf*4)
if use_attention:
self.model_layer11att = nn.Sequential(nn.Conv2d(ngf*8, ngf*8, kernel_size=1, stride=1), nn.Sigmoid())
self.model_layer12 = get_act_dconv(nn.ReLU(True), ngf*8, ngf*2, 4, 2, 1, False)
self.model_layer12norm = norm_type_list[norm_type_indicator[12]](ngf*2)
if use_attention:
self.model_layer12att = nn.Sequential(nn.Conv2d(ngf*4, ngf*4, kernel_size=1, stride=1), nn.Sigmoid())
self.model_layer13 = get_act_dconv(nn.ReLU(True), ngf*4, ngf, 4, 2, 1, False)
self.model_layer13norm = norm_type_list[norm_type_indicator[13]](ngf)
if use_attention:
self.model_layer13att = nn.Sequential(nn.Conv2d(ngf*2, ngf*2, kernel_size=1, stride=1), nn.Sigmoid())
self.model_out = nn.Sequential(nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, output_nc, kernel_size=4, stride=2, padding=1), nn.Tanh())
def forward(self, x, mask):
x0 = self.model_layer0(x)
x1 = self.model_layer1(x0)
if self.model_layer1norm._get_name() in self.norm_namebuffer:
x1 = self.model_layer1norm(x1, mask)
else:
x1 = self.model_layer1norm(x1)
x2 = self.model_layer2(x1)
if self.model_layer2norm._get_name() in self.norm_namebuffer:
x2 = self.model_layer2norm(x2, mask)
else:
x2 = self.model_layer2norm(x2)
x3 = self.model_layer3(x2)
if self.model_layer3norm._get_name() in self.norm_namebuffer:
x3 = self.model_layer3norm(x3, mask)
else:
x3 = self.model_layer3norm(x3)
ox3 = self.unet_block(x3, mask)
ox2 = self.model_layer11(ox3)
if self.model_layer11norm._get_name() in self.norm_namebuffer:
ox2 = self.model_layer11norm(ox2, mask)
else:
ox2 = self.model_layer11norm(ox2)
ox2 = torch.cat([x2, ox2], 1)
if self.use_attention:
ox2 = self.model_layer11att(ox2) * ox2
ox1 = self.model_layer12(ox2)
if self.model_layer12norm._get_name() in self.norm_namebuffer:
ox1 = self.model_layer12norm(ox1, mask)
else:
ox1 = self.model_layer12norm(ox1)
ox1 = torch.cat([x1, ox1], 1)
if self.use_attention:
ox1 = self.model_layer12att(ox1) * ox1
ox0 = self.model_layer13(ox1)
if self.model_layer13norm._get_name() in self.norm_namebuffer:
ox0 = self.model_layer13norm(ox0, mask)
else:
ox0 = self.model_layer13norm(ox0)
ox0 = torch.cat([x0, ox0], 1)
if self.use_attention:
ox0 = self.model_layer13att(ox0) * ox0
out = self.model_out(ox0)
return out
def processImage(self, x, mask, background=None):
if background is not None:
x = x*mask + background * (1 - mask)
if self.input_nc == 4:
x = torch.cat([x, mask], dim=1) # (bs, 4, 256, 256)
pred = self.forward(x, mask)
return pred * mask + x[:,:3,:,:] * (1 - mask)
class UnetBlockCodec(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None, submodule=None, outermost=False, innermost=False,
norm_layer=RAIN, use_dropout=False, use_attention=False, enc=True, dec=True):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetBlockCodec) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
user_dropout (bool) -- if use dropout layers.
enc (bool) -- if use give norm_layer in encoder part.
dec (bool) -- if use give norm_layer in decoder part.
"""
super(UnetBlockCodec, self).__init__()
self.outermost = outermost
self.innermost = innermost
self.use_dropout = use_dropout
self.use_attention = use_attention
use_bias = False
if input_nc is None:
input_nc = outer_nc
self.norm_namebuffer = ['RAIN', 'RAIN_Method_Learnable', 'RAIN_Method_BN']
if outermost:
self.down = nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
self.submodule = submodule
self.up = nn.Sequential(
nn.ReLU(True),
nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
elif innermost:
self.up = nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias),
nn.ReLU(True),
nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias)
)
self.upnorm = norm_layer(outer_nc) if dec else get_norm_layer('instance')(outer_nc)
else:
self.down = nn.Sequential(
nn.LeakyReLU(0.2, True),
nn.Conv2d(input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias),
)
self.downnorm = norm_layer(inner_nc) if enc else get_norm_layer('instance')(inner_nc)
self.submodule = submodule
self.up = nn.Sequential(
nn.ReLU(True),
nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias),
)
self.upnorm = norm_layer(outer_nc) if dec else get_norm_layer('instance')(outer_nc)
if use_dropout:
self.dropout = nn.Dropout(0.5)
if use_attention:
attention_conv = nn.Conv2d(outer_nc+input_nc, outer_nc+input_nc, kernel_size=1)
attention_sigmoid = nn.Sigmoid()
self.attention = nn.Sequential(*[attention_conv, attention_sigmoid])
def forward(self, x, mask):
if self.outermost:
x = self.down(x)
x = self.submodule(x, mask)
ret = self.up(x)
return ret
elif self.innermost:
ret = self.up(x)
if self.upnorm._get_name() in self.norm_namebuffer:
ret = self.upnorm(ret, mask)
else:
ret = self.upnorm(ret)
ret = torch.cat([x, ret], 1)
if self.use_attention:
return self.attention(ret) * ret
return ret
else:
ret = self.down(x)
if self.downnorm._get_name() in self.norm_namebuffer:
ret = self.downnorm(ret, mask)
else:
ret = self.downnorm(ret)
ret = self.submodule(ret, mask)
ret = self.up(ret)
if self.upnorm._get_name() in self.norm_namebuffer:
ret = self.upnorm(ret, mask)
else:
ret = self.upnorm(ret)
if self.use_dropout: # only works for middle features
ret = self.dropout(ret)
ret = torch.cat([x, ret], 1)
if self.use_attention:
return self.attention(ret) * ret
return ret
class PixelDiscriminator(nn.Module):
"""Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
"""Construct a 1x1 PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
"""
super(PixelDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.net = [
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
norm_layer(ndf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
self.net = nn.Sequential(*self.net)
def forward(self, input):
"""Standard forward."""
return self.net(input)
class PartialConv2d(nn.Conv2d):
def __init__(self, *args, **kwargs):
# whether the mask is multi-channel or not
if 'multi_channel' in kwargs:
self.multi_channel = kwargs['multi_channel']
kwargs.pop('multi_channel')
else:
self.multi_channel = False
self.return_mask = True
super(PartialConv2d, self).__init__(*args, **kwargs)
if self.multi_channel:
self.weight_maskUpdater = torch.ones(self.out_channels, self.in_channels, self.kernel_size[0],
self.kernel_size[1])
else:
self.weight_maskUpdater = torch.ones(1, 1, self.kernel_size[0], self.kernel_size[1])
self.slide_winsize = self.weight_maskUpdater.shape[1] * self.weight_maskUpdater.shape[2] * \
self.weight_maskUpdater.shape[3]
self.last_size = (None, None, None, None)
self.update_mask = None
self.mask_ratio = None
def forward(self, input, mask_in=None):
assert len(input.shape) == 4
if mask_in is not None or self.last_size != tuple(input.shape):
self.last_size = tuple(input.shape)
with torch.no_grad():
if self.weight_maskUpdater.type() != input.type():
self.weight_maskUpdater = self.weight_maskUpdater.to(input)
if mask_in is None:
# if mask is not provided, create a mask
if self.multi_channel:
mask = torch.ones(input.data.shape[0], input.data.shape[1], input.data.shape[2],
input.data.shape[3]).to(input)
else:
mask = torch.ones(1, 1, input.data.shape[2], input.data.shape[3]).to(input)
else:
mask = mask_in
self.update_mask = F.conv2d(mask, self.weight_maskUpdater, bias=None, stride=self.stride,
padding=self.padding, dilation=self.dilation, groups=1)
self.mask_ratio = self.slide_winsize / (self.update_mask + 1e-8)
self.update_mask = torch.clamp(self.update_mask, 0, 1)
self.mask_ratio = torch.mul(self.mask_ratio, self.update_mask)
raw_out = super(PartialConv2d, self).forward(torch.mul(input, mask) if mask_in is not None else input)
if self.bias is not None:
bias_view = self.bias.view(1, self.out_channels, 1, 1)
output = torch.mul(raw_out - bias_view, self.mask_ratio) + bias_view
output = torch.mul(output, self.update_mask)
else:
output = torch.mul(raw_out, self.mask_ratio)
if self.return_mask:
return output, self.update_mask
else:
return output
class OrgDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=6, norm_layer=nn.BatchNorm2d, global_stages=0):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(OrgDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 3
padw = 0
self.conv1 = spectral_norm(PartialConv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw))
if global_stages < 1:
self.conv1f = spectral_norm(PartialConv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw))
else:
self.conv1f = self.conv1
self.relu1 = nn.LeakyReLU(0.2, True)
nf_mult = 1
nf_mult_prev = 1
n = 1
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.conv2 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm2 = norm_layer(ndf * nf_mult)
if global_stages < 2:
self.conv2f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm2f = norm_layer(ndf * nf_mult)
else:
self.conv2f = self.conv2
self.norm2f = self.norm2
self.relu2 = nn.LeakyReLU(0.2, True)
n = 2
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.conv3 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm3 = norm_layer(ndf * nf_mult)
if global_stages < 3:
self.conv3f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm3f = norm_layer(ndf * nf_mult)
else:
self.conv3f = self.conv3
self.norm3f = self.norm3
self.relu3 = nn.LeakyReLU(0.2, True)
n = 3
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.norm4 = norm_layer(ndf * nf_mult)
self.conv4 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.conv4f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm4f = norm_layer(ndf * nf_mult)
self.relu4 = nn.LeakyReLU(0.2, True)
n = 4
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.conv5 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.conv5f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm5 = norm_layer(ndf * nf_mult)
self.norm5f = norm_layer(ndf * nf_mult)
self.relu5 = nn.LeakyReLU(0.2, True)
n = 5
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
self.conv6 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.conv6f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias))
self.norm6 = norm_layer(ndf * nf_mult)
self.norm6f = norm_layer(ndf * nf_mult)
self.relu6 = nn.LeakyReLU(0.2, True)
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
self.conv7 = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias))
self.conv7f = spectral_norm(
PartialConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias))
def forward(self, input, mask=None):
x = input
x, _ = self.conv1(x)
x = self.relu1(x)
x, _ = self.conv2(x)
x = self.norm2(x)
x = self.relu2(x)
x, _ = self.conv3(x)
x = self.norm3(x)
x = self.relu3(x)
x, _ = self.conv4(x)
x = self.norm4(x)
x = self.relu4(x)
x, _ = self.conv5(x)
x = self.norm5(x)
x = self.relu5(x)
x, _ = self.conv6(x)
x = self.norm6(x)
x = self.relu6(x)
x, _ = self.conv7(x)
"""Standard forward."""
xf, xb = input, input
mf, mb = mask, 1 - mask
xf, mf = self.conv1f(xf, mf)
xf = self.relu1(xf)
xf, mf = self.conv2f(xf, mf)
xf = self.norm2f(xf)
xf = self.relu2(xf)
xf, mf = self.conv3f(xf, mf)
xf = self.norm3f(xf)
xf = self.relu3(xf)
xf, mf = self.conv4f(xf, mf)
xf = self.norm4f(xf)
xf = self.relu4(xf)
xf, mf = self.conv5f(xf, mf)
xf = self.norm5f(xf)
xf = self.relu5(xf)
xf, mf = self.conv6f(xf, mf)
xf = self.norm6f(xf)
xf = self.relu6(xf)
xf, mf = self.conv7f(xf, mf)
xb, mb = self.conv1f(xb, mb)
xb = self.relu1(xb)
xb, mb = self.conv2f(xb, mb)
xb = self.norm2f(xb)
xb = self.relu2(xb)
xb, mb = self.conv3f(xb, mb)
xb = self.norm3f(xb)
xb = self.relu3(xb)
xb, mb = self.conv4f(xb, mb)
xb = self.norm4f(xb)
xb = self.relu4(xb)
xb, mb = self.conv5f(xb, mb)
xb = self.norm5f(xb)
xb = self.relu5(xb)
xb, mb = self.conv6f(xb, mb)
xb = self.norm6f(xb)
xb = self.relu6(xb)
xb, mb = self.conv7f(xb, mb)
return x, xf, xb
class NLayerDiscriminator(nn.Module):
def __init__(self, input_nc, ndf=64, n_layers=6, norm_layer=nn.BatchNorm2d):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(NLayerDiscriminator, self).__init__()
num_outputs = ndf * min(2 ** n_layers, 8)
self.D = OrgDiscriminator(input_nc, ndf, n_layers, norm_layer)
self.convl1 = spectral_norm(nn.Conv2d(num_outputs, num_outputs, kernel_size=1, stride=1))
self.relul1 = nn.LeakyReLU(0.2)
self.convl2 = spectral_norm(nn.Conv2d(num_outputs, num_outputs, kernel_size=1, stride=1))
self.relul2 = nn.LeakyReLU(0.2)
self.convl3 = nn.Conv2d(num_outputs, 1, kernel_size=1, stride=1)
self.convg3 = nn.Conv2d(num_outputs, 1, kernel_size=1, stride=1)
def forward(self, input, mask=None, gp=False, feat_loss=False):
x, xf, xb = self.D(input, mask)
feat_l, feat_g = torch.cat([xf, xb])
x = self.convg3(x)
sim = xf * xb
sim = self.convl1(sim)
sim = self.relul1(sim)
sim = self.convl2(sim)
sim = self.relul2(sim)
sim = self.convl3(sim)
sim_sum = sim
if not gp:
if feat_loss:
return x, sim_sum, feat_g, feat_l
return x, sim_sum
return (x + sim_sum) * 0.5