-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.py
141 lines (115 loc) · 4.67 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import NeuralNetwork
import numpy as np
import os
import random
import matplotlib.pyplot as plt
import cv2
import pandas as pd
from PIL import Image
import tensorflow as tf
def load_dataset(path, random_shuffle=True, rgb2gray=False, invert_gray=False):
x = []
y = []
print("Loading data from: " + path)
for num in os.listdir(path):
for image in os.listdir(path + num):
im = Image.open(path + num + '/' + image)
im = np.asarray(im)
if rgb2gray:
im = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
if invert_gray:
im = cv2.bitwise_not(im)
im = (im / 127.5) - 1
im = im.reshape((28 * 28, 1))
x.append(im)
y.append(np.array([0 if int(num) != y_targ else 1 for y_targ in range(10)]).reshape(10, 1))
print('Loaded: ' + num)
print()
if random_shuffle:
shuffled = list(zip(x, y))
random.shuffle(shuffled)
split = lambda z: ([curr[0] for curr in z], [curr[1] for curr in z])
x, y = split(shuffled)
return np.array(x), np.array(y)
def target_nums_to_ndarray(target):
return np.array([
[1 if target[sample] == num else 0 for num in range(10)] for sample in range(target.shape[0])]
).reshape(target.shape[0], 10, 1)
def create_model():
NN = NeuralNetwork.NeuralNetwork()
NN.add_input_layer(28 * 28)
NN.add_hidden_layer(512)
NN.add_hidden_layer(512)
NN.add_hidden_layer(512)
NN.add_hidden_layer(10, act_func='softmax')
return NN
def addPoint(train_loss, val_loss=None, show=True):
average_train_loss.append(train_loss)
if val_loss is not None:
average_val_loss.append(val_loss)
positions.append(len(average_train_loss))
if show:
plt.close('all')
plt.xlabel("Epoch")
plt.ylabel("Loss")
if val_loss is not None:
plt.plot(positions, average_train_loss, positions, average_val_loss)
else:
plt.plot(positions, average_train_loss)
plt.show(block=False)
plt.pause(0.0001)
def feed_data(NN, x_train, y_train, x_val=None, y_val=None, train=True, num_epochs=3, batch_size=256):
if train:
for epoch in range(num_epochs):
print('Epoch ' + str(epoch + 1) + '/' + str(num_epochs) + ':')
loss, correct, val_loss, val_correct = NN.fit(x_train, y_train,
x_val=x_val, y_val=y_val, batch_size=batch_size,
lr_decay=0.999)
addPoint(loss, val_loss)
else:
predictions = NN.predict(x_train)
loss = NN.calculate_loss(predictions, y_train)
addPoint(loss)
def view_false(NN, x, y):
predictions = NN.predict(x)
for num in range(predictions.shape[0]):
if predictions[num:num + 1, :, :].argmax() == y[num:num + 1, :].argmax():
print(predictions[num:num + 1, :, :].argmax(), y[num:num + 1, :].argmax())
im = (x[num:num + 1, :, :].reshape(28, 28) + 1) * 127.5
name = "pred/target : " + str(predictions[num:num + 1, :, :].argmax()) + \
"/" + str(y[num:num + 1, :].argmax())
cv2.imshow(name, im)
cv2.waitKey()
cv2.destroyAllWindows()
def prediction_matrix(NN, x, y):
mat = np.zeros(shape=(10, 10))
for num in range(x.shape[0]):
pred = NN.predict(x[num:num + 1, :, :])
mat[y[num:num + 1, :].argmax(), pred.argmax()] += 1
attributes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
df = pd.DataFrame(np.around(mat / mat.sum(axis=1, keepdims=True), decimals=3), columns=attributes, index=attributes)
print('\nTarget\\Predicted')
print(df)
return mat
# Directories
im_path = 'Images/'
models_path = 'Weights/'
# Lists for the plot
average_train_loss = []
average_val_loss = []
positions = [] # x-coordinates
NN = create_model()
# Loading-, reshaping- and normalizing the data
(x_train, y_train), (x_val, y_val) = tf.keras.datasets.mnist.load_data()
x_train = (x_train.reshape(x_train.shape[0], 28 * 28, 1) / 127.5) - 1
x_val = (x_val.reshape(x_val.shape[0], 28 * 28, 1) / 127.5) - 1
y_train = target_nums_to_ndarray(y_train)
y_val = target_nums_to_ndarray(y_val)
NN.load_weights('trained-' + str(len(os.listdir(models_path))))
# feed_data(NN, x_train, y_train, x_val=x_val, y_val=y_val, train=True, num_epochs=5, batch_size=64)
prediction_matrix(NN, x_val, y_val)
# NN.save_weights('trained-' + str(len(os.listdir(models_path)) + 1))
# view_false(NN, x_val, y_val)
# Predicting my own handwritten digits
x, y=load_dataset(im_path, random_shuffle=False,rgb2gray=True, invert_gray=True)
prediction_matrix(NN, x, y)