-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathModel.py
26 lines (23 loc) · 1.09 KB
/
Model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from keras.models import Sequential
from tensorflow.keras import Model
from keras.layers import Dense, Dropout, Activation, Flatten, Lambda
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
def get_conv(input_shape=(64, 64, 3), filename=None):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=input_shape, output_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu', name='conv1', input_shape=input_shape, padding="same"))
model.add(Conv2D(64, (3, 3), activation='relu', name='conv2', padding="same"))
model.add(MaxPooling2D(pool_size=(3, 3)))
model.add(Dropout(0.25))
model.add(Conv2D(128, (8, 8), activation="relu", name="dense1"))
model.add(Dropout(0.5))
model.add(Conv2D(1, (14, 14), name="dense2", activation="sigmoid"))
for layer in model.layers:
print(layer.input_shape, layer.output_shape)
if filename:
model.load_weights(filename)
model.add(Flatten())
model.compile(loss='mse', optimizer='adadelta', metrics=['accuracy'])
return model