forked from sugus-labs/data-science-the-bridge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
presentation.py
114 lines (99 loc) · 3.42 KB
/
presentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from the_bridge import Teacher
from companies import Telco, Retail, Insurance
import hobbies
from datetime import date
def calculate_age(born_date):
today = date.today()
age = today.year - born_date.year
return age
class Person:
def __init__(name, academic_role, born_date,
phone_number, email, experience, hobbies):
self.name = name
self.academic_role = academic_role
self.birth_date = born_date
self.phone_number = phone_number
self.email = email
self.experience = experience
self.hobbies = hobbies
age = calculate_age(born_date)
##### THE BELOW CODE IS THE IMPORTANT PART #####
academic_roles = {
"LEAD_INSTRUCTOR": "Lead Instructor @ The Bridge",
"TEACHER_ASSISTANT": "Teacher Assistant @ The Bridge",
"STUDENT": "Student @ The Bridge",
}
teacher = Person(
name = "Gustavo Martín Vela",
academic_role = academic_roles.LEAD_INSTRUCTOR,
born_date = date(1986, 11, 22),
phone_number = "633996124",
email = "[email protected]",
experience = {
Telco.TELEFONICA: ["Data Scientist", 72],
Retail.IKEA: ["Data Scientist", 24],
Insurance.INTERMUNDIAL: ["Data Engineering Manager", 12],
Telco.MASMOVIL: ["Data Engineer Lead", 24],
Retail.INDITEX: ["Cloud Data Solutions Lead", 4],
},
hobbies = [hobbies.mtb, hobbies.electronics, hobbies.iot,
hobbies.data_analysis, hobbies.travels],
)
##### THIS IS THE PART YOU HAVE TO FILL IT #####
#student = Person(
# name = ,
# academic_role = ,
# born_date = ,
# phone_number = ,
# email = ,
# experience = {},
# hobbies = [],
#)
from datetime import date
ramp_up = {
"start_date": date(2022, 4, 18),
"end_date": date(2022, 5, 14),
"description": """
Learn the fundamentals of Python language programming.
Learn the basics of Git to manage code versions.
Learn the basics of Markdown to comment the notebooks code.
""",
"subjects": ["Python", "Data Science toolkit", "Git", "Markdown"],
"roles": ["Python Programmer"]
}
data_analysis = {
"start_date": date(2022, 5, 18),
"end_date": date(2022, 7, 16),
"description": """
Learn the Python libraries to analyze and visualize the data.
Learn the basics of data analysis and exploratory analysis.
Learn about SQL and NoSQL databases.
""",
"subjects": ["Data Analysis", "Data Exploration",
"Data Visualization", "SQL"],
"roles": ["Data Analyst", "Data Engineer"]
}
machine_learning = {
"start_date": date(2022, 7, 18),
"end_date": date(2022, 10, 15),
"description": """
Learn the basics of statistics.
Build your own models.
Visualize the effectiveness of your models.
""",
"subjects": ["Supervised models", "Unsupervised models",
"Time series", "Deep learning"],
"roles": ["Data Engineer", "Machine Learning Engineer"]
}
data_science_and_business = {
"start_date": date(2022, 10, 17),
"end_date": date(2022, 12, 17),
"description": """
Learn how to deploy your models in production.
Create and deploy Data Science projects end to end.
Understand the business needs and create data solutions.
""",
"subjects": ["Storytelling", "Big Data", "API", "Cloud"],
"roles": ["Data Scientist", "Visualization Engineer",
"Business Analyst"]
}