forked from ykamikawa/tf-keras-SegNet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
layers.py
100 lines (88 loc) · 3.57 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from keras import backend as K
from keras.layers import Layer
class MaxPoolingWithArgmax2D(Layer):
def __init__(
self,
pool_size=(2, 2),
strides=(2, 2),
padding='same',
**kwargs):
super(MaxPoolingWithArgmax2D, self).__init__(**kwargs)
self.padding = padding
self.pool_size = pool_size
self.strides = strides
def call(self, inputs, **kwargs):
padding = self.padding
pool_size = self.pool_size
strides = self.strides
if K.backend() == 'tensorflow':
ksize = [1, pool_size[0], pool_size[1], 1]
padding = padding.upper()
strides = [1, strides[0], strides[1], 1]
output, argmax = K.tf.nn.max_pool_with_argmax(
inputs,
ksize=ksize,
strides=strides,
padding=padding)
else:
errmsg = '{} backend is not supported for layer {}'.format(
K.backend(), type(self).__name__)
raise NotImplementedError(errmsg)
argmax = K.cast(argmax, K.floatx())
return [output, argmax]
def compute_output_shape(self, input_shape):
ratio = (1, 2, 2, 1)
output_shape = [
dim//ratio[idx]
if dim is not None else None
for idx, dim in enumerate(input_shape)]
output_shape = tuple(output_shape)
return [output_shape, output_shape]
def compute_mask(self, inputs, mask=None):
return 2 * [None]
class MaxUnpooling2D(Layer):
def __init__(self, size=(2, 2), **kwargs):
super(MaxUnpooling2D, self).__init__(**kwargs)
self.size = size
def call(self, inputs, output_shape=None):
updates, mask = inputs[0], inputs[1]
with K.tf.variable_scope(self.name):
mask = K.cast(mask, 'int32')
input_shape = K.tf.shape(updates, out_type='int32')
# calculation new shape
if output_shape is None:
output_shape = (
input_shape[0],
input_shape[1]*self.size[0],
input_shape[2]*self.size[1],
input_shape[3])
self.output_shape1 = output_shape
# calculation indices for batch, height, width and feature maps
one_like_mask = K.ones_like(mask, dtype='int32')
batch_shape = K.concatenate(
[[input_shape[0]], [1], [1], [1]],
axis=0)
batch_range = K.reshape(
K.tf.range(output_shape[0], dtype='int32'),
shape=batch_shape)
b = one_like_mask * batch_range
y = mask // (output_shape[2] * output_shape[3])
x = (mask // output_shape[3]) % output_shape[2]
feature_range = K.tf.range(output_shape[3], dtype='int32')
f = one_like_mask * feature_range
# transpose indices & reshape update values to one dimension
updates_size = K.tf.size(updates)
indices = K.transpose(K.reshape(
K.stack([b, y, x, f]),
[4, updates_size]))
values = K.reshape(updates, [updates_size])
ret = K.tf.scatter_nd(indices, values, output_shape)
return ret
def compute_output_shape(self, input_shape):
mask_shape = input_shape[1]
return (
mask_shape[0],
mask_shape[1]*self.size[0],
mask_shape[2]*self.size[1],
mask_shape[3]
)