Skip to content
forked from apache/beam

Apache Beam is a unified programming model for Batch and Streaming data processing.

License

Notifications You must be signed in to change notification settings

AdalbertMemSQL/beam

This branch is 5442 commits behind apache/beam:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

921bc7b · Feb 20, 2023
Feb 17, 2023
Feb 14, 2023
Feb 17, 2023
Feb 17, 2023
Feb 16, 2023
Aug 23, 2022
Feb 14, 2023
Feb 10, 2023
Mar 28, 2022
Feb 15, 2023
Feb 1, 2023
Feb 16, 2023
Dec 23, 2022
Feb 20, 2023
Aug 10, 2022
Feb 17, 2023
Oct 25, 2022
Jun 17, 2021
Jan 6, 2023
Jan 14, 2021
Oct 19, 2020
Dec 6, 2022
May 14, 2020
Feb 17, 2023
Dec 22, 2022
May 9, 2022
Jul 23, 2021
Jul 23, 2021
Jan 24, 2018
Aug 16, 2018
Jun 6, 2022
Aug 16, 2018
Feb 8, 2023
Jan 18, 2023
Dec 23, 2021
Sep 10, 2020
Dec 1, 2022
Feb 8, 2023
Dec 14, 2020

Repository files navigation

Apache Beam

Apache Beam is a unified model for defining both batch and streaming data-parallel processing pipelines, as well as a set of language-specific SDKs for constructing pipelines and Runners for executing them on distributed processing backends, including Apache Flink, Apache Spark, Google Cloud Dataflow, and Hazelcast Jet.

Status

Maven Version PyPI version Go version Python coverage Build python source distribution and wheels Python tests Java tests Go tests (Jenkins) Java tests (Jenkins) Python tests (Jenkins)

Overview

Beam provides a general approach to expressing embarrassingly parallel data processing pipelines and supports three categories of users, each of which have relatively disparate backgrounds and needs.

  1. End Users: Writing pipelines with an existing SDK, running it on an existing runner. These users want to focus on writing their application logic and have everything else just work.
  2. SDK Writers: Developing a Beam SDK targeted at a specific user community (Java, Python, Scala, Go, R, graphical, etc). These users are language geeks and would prefer to be shielded from all the details of various runners and their implementations.
  3. Runner Writers: Have an execution environment for distributed processing and would like to support programs written against the Beam Model. Would prefer to be shielded from details of multiple SDKs.

The Beam Model

The model behind Beam evolved from several internal Google data processing projects, including MapReduce, FlumeJava, and Millwheel. This model was originally known as the “Dataflow Model”.

To learn more about the Beam Model (though still under the original name of Dataflow), see the World Beyond Batch: Streaming 101 and Streaming 102 posts on O’Reilly’s Radar site, and the VLDB 2015 paper.

The key concepts in the Beam programming model are:

  • PCollection: represents a collection of data, which could be bounded or unbounded in size.
  • PTransform: represents a computation that transforms input PCollections into output PCollections.
  • Pipeline: manages a directed acyclic graph of PTransforms and PCollections that is ready for execution.
  • PipelineRunner: specifies where and how the pipeline should execute.

SDKs

Beam supports multiple language-specific SDKs for writing pipelines against the Beam Model.

Currently, this repository contains SDKs for Java, Python and Go.

Have ideas for new SDKs or DSLs? See the sdk-ideas label.

Runners

Beam supports executing programs on multiple distributed processing backends through PipelineRunners. Currently, the following PipelineRunners are available:

  • The DirectRunner runs the pipeline on your local machine.
  • The DataflowRunner submits the pipeline to the Google Cloud Dataflow.
  • The FlinkRunner runs the pipeline on an Apache Flink cluster. The code has been donated from dataArtisans/flink-dataflow and is now part of Beam.
  • The SparkRunner runs the pipeline on an Apache Spark cluster. The code has been donated from cloudera/spark-dataflow and is now part of Beam.
  • The JetRunner runs the pipeline on a Hazelcast Jet cluster. The code has been donated from hazelcast/hazelcast-jet and is now part of Beam.
  • The Twister2Runner runs the pipeline on a Twister2 cluster. The code has been donated from DSC-SPIDAL/twister2 and is now part of Beam.

Have ideas for new Runners? See the runner-ideas label.

Getting Started

To learn how to write Beam pipelines, read the Quickstart for [Java, Python, or Go] available on our website.

Contact Us

To get involved in Apache Beam:

Instructions for building and testing Beam itself are in the contribution guide.

More Information

About

Apache Beam is a unified programming model for Batch and Streaming data processing.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 64.9%
  • Python 17.0%
  • Go 9.1%
  • TypeScript 3.1%
  • Dart 1.8%
  • Groovy 1.6%
  • Other 2.5%