-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval.py
159 lines (127 loc) · 6.18 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import time
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import models
import cv2
import os
import os.path as osp
import numpy as np
import glob
from torch.utils.data import Dataset, DataLoader
from utils import *
from visulization_utils import *
import warnings
warnings.filterwarnings('ignore')
###############################################################################################################################################
model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__"))
parser = argparse.ArgumentParser()
parser.add_argument('-tr', '--test_root', type=str, default='/home/huliwen/vidar_data/test', help='root path of test datasets')
parser.add_argument('-dt', '--dt', type=int, default=10, help='delta index between the input for flow')
parser.add_argument('-a', '--arch', default='scflow', choices=model_names,
help='model architecture, overwritten if pretrained is specified: ' + ' | '.join(model_names))
parser.add_argument('-bn', '--batch_norm', default=False, type=bool, help='if use batch normlization during training')
parser.add_argument('-j', '--workers', default=8, type=int, help='number of data loading workers')
parser.add_argument('--pretrained', dest='pretrained', default=None, help='path to pre-trained model')
parser.add_argument('--print-detail', '-pd', action='store_true')
parser.add_argument('--eval_root', '-er', default='eval_vis_all/scflow')
args = parser.parse_args()
n_iter = 0
eval_vis_path = args.eval_root + '_dt{:d}'.format(args.dt)
if not osp.exists(eval_vis_path):
os.makedirs(eval_vis_path)
class Test_loading(Dataset):
def __init__(self, scene=None, transform=None):
self.scene = scene
self.samples = self.collect_samples()
def collect_samples(self):
scene_list = [self.scene]
samples = []
for scene in scene_list:
spike_dir = osp.join(args.test_root, str(scene), 'encoding25_dt{:d}'.format(args.dt))
flowgt_dir = osp.join(args.test_root, str(scene), 'dt={:d}'.format(args.dt), 'motion_vector')
for st in range(0, len(glob.glob(spike_dir+'/*.npy')) - 1):
seq1_path = spike_dir + '/' + str(int(st)) + '.npy'
seq2_path = spike_dir + '/' + str(int(st+1)) + '.npy'
flow_path = flowgt_dir + '/{:04d}.flo'.format(int(st))
if osp.exists(seq1_path) and osp.exists(seq2_path) and osp.exists(flow_path):
s = {}
s['seq1_path'], s['seq2_path'], s['flow_path'] = seq1_path, seq2_path, flow_path
samples.append(s)
return samples
def _load_sample(self, s):
seq1 = np.load(s['seq1_path'], allow_pickle=True).astype(np.float32)
seq2 = np.load(s['seq2_path'], allow_pickle=True).astype(np.float32)
flow = readFlow(s['flow_path']).astype(np.float32)
return seq1, seq2, flow
def __len__(self):
return len(self.samples)
def __getitem__(self, index):
seq1, seq2, flow = self._load_sample(self.samples[index])
return seq1, seq2, flow
def validate(test_loader, model, scene):
model.eval()
AEE_sum = 0.
eval_time_sum = 0.
iters = 0.
scene_eval_vis_path = osp.join(eval_vis_path, scene)
if not osp.exists(scene_eval_vis_path):
os.makedirs(scene_eval_vis_path)
for i, data in enumerate(test_loader, 0):
seq1_raw, seq2_raw, flowgt_raw = data
# compute output
seq1_raw = seq1_raw.cuda().type(torch.cuda.FloatTensor)
seq2_raw = seq2_raw.cuda().type(torch.cuda.FloatTensor)
flowgt = flowgt_raw.cuda().type(torch.cuda.FloatTensor).permute([0, 3, 1, 2])
padder = InputPadder(seq1_raw.shape)
seq1, seq2 = padder.pad(seq1_raw, seq2_raw)
st_time = time.time()
if i == 0:
B, C, H, W = seq1.shape
flow_init = torch.zeros([B, 2, H, W])
with torch.no_grad():
flows, model_res_dict = model(seq1=seq1, seq2=seq2, flow=flow_init, dt=args.dt)
eval_time = time.time() - st_time
flow_init = flows[0].clone().detach()
flow_init = flow_warp(flow_init, -flow_init)
pred_flow = padder.unpad(flows[0]).detach().permute([0, 2, 3, 1]).squeeze().cpu().numpy()
flowgt = flowgt.detach().permute([0, 2, 3, 1]).squeeze().cpu().numpy()
pred_flow_vis = flow_to_img_scflow(pred_flow)
pred_flow_vis_path = osp.join(scene_eval_vis_path, '{:03d}_pred.png'.format(i))
cv2.imwrite(pred_flow_vis_path, pred_flow_vis)
AEE = compute_aee(flowgt, pred_flow, thresh=1)
AEE_sum += AEE
eval_time_sum += eval_time
iters += 1
if args.print_detail:
print('Scene: {:8s}, Index {:04d}, AEE: {:6.4f}, Eval Time: {:6.4f}'.format(scene, i, AEE, eval_time))
print(percent_AEE)
# print('-------------------------------------------------------')
print('Scene: {:s}, Mean AEE: {:6.4f}, Mean Eval Time: {:6.4f}'.format(scene, AEE_sum / iters, eval_time_sum / iters))
print(percent_AEE_sum/iters)
print('-------------------------------------------------------')
return AEE_sum / iters
def main():
global args, best_EPE, image_resize, event_interval, spiking_ts, device, sp_threshold
# create model
if args.pretrained:
network_data = torch.load(args.pretrained)
print("=> using pre-trained model '{}'".format(args.arch))
else:
network_data = None
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch](network_data, args.batch_norm).cuda()
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
# for scene in os.listdir(args.test_root):
for scene in ['ball', 'cook', 'dice', 'dolldrop', 'fan', 'fly', 'hand', 'jump', 'poker', 'top']:
Test_dataset = Test_loading(scene=scene)
test_loader = DataLoader(dataset=Test_dataset,
batch_size=1,
shuffle=False,
num_workers=args.workers)
EPE = validate(test_loader, model, scene)
model.train()
if __name__ == '__main__':
main()