forked from sjvasquez/handwriting-synthesis
-
Notifications
You must be signed in to change notification settings - Fork 3
/
tf_base_model.py
407 lines (344 loc) · 18.3 KB
/
tf_base_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from __future__ import print_function
from collections import deque
from datetime import datetime
import logging
import os
import pprint as pp
import time
import numpy as np
import tensorflow as tf
from tf_utils import shape
class TFBaseModel(object):
"""Interface containing some boilerplate code for training tensorflow models.
Subclassing models must implement self.calculate_loss(), which returns a tensor for the batch loss.
Code for the training loop, parameter updates, checkpointing, and inference are implemented here and
subclasses are mainly responsible for building the computational graph beginning with the placeholders
and ending with the loss tensor.
Args:
reader: Class with attributes train_batch_generator, val_batch_generator, and test_batch_generator
that yield dictionaries mapping tf.placeholder names (as strings) to batch data (numpy arrays).
batch_size: Minibatch size.
learning_rate: Learning rate.
optimizer: 'rms' for RMSProp, 'adam' for Adam, 'sgd' for SGD
grad_clip: Clip gradients elementwise to have norm at most equal to grad_clip.
regularization_constant: Regularization constant applied to all trainable parameters.
keep_prob: 1 - p, where p is the dropout probability
early_stopping_steps: Number of steps to continue training after validation loss has
stopped decreasing.
warm_start_init_step: If nonzero, model will resume training a restored model beginning
at warm_start_init_step.
num_restarts: After validation loss plateaus, the best checkpoint will be restored and the
learning rate will be halved. This process will repeat num_restarts times.
enable_parameter_averaging: If true, model saves exponential weighted averages of parameters
to separate checkpoint file.
min_steps_to_checkpoint: Model only saves after min_steps_to_checkpoint training steps
have passed.
log_interval: Train and validation accuracies are logged every log_interval training steps.
loss_averaging_window: Train/validation losses are averaged over the last loss_averaging_window
training steps.
num_validation_batches: Number of batches to be used in validation evaluation at each step.
log_dir: Directory where logs are written.
checkpoint_dir: Directory where checkpoints are saved.
prediction_dir: Directory where predictions/outputs are saved.
"""
def __init__(
self,
reader=None,
batch_sizes=[128],
num_training_steps=20000,
learning_rates=[.01],
beta1_decays=[.99],
optimizer='adam',
grad_clip=5,
regularization_constant=0.0,
keep_prob=1.0,
patiences=[3000],
warm_start_init_step=0,
enable_parameter_averaging=False,
min_steps_to_checkpoint=100,
log_interval=20,
logging_level=logging.INFO,
loss_averaging_window=100,
validation_batch_size=64,
log_dir='logs',
checkpoint_dir='checkpoints',
prediction_dir='predictions',
):
assert len(batch_sizes) == len(learning_rates) == len(patiences)
self.batch_sizes = batch_sizes
self.learning_rates = learning_rates
self.beta1_decays = beta1_decays
self.patiences = patiences
self.num_restarts = len(batch_sizes) - 1
self.restart_idx = 0
self.update_train_params()
self.reader = reader
self.num_training_steps = num_training_steps
self.optimizer = optimizer
self.grad_clip = grad_clip
self.regularization_constant = regularization_constant
self.warm_start_init_step = warm_start_init_step
self.keep_prob_scalar = keep_prob
self.enable_parameter_averaging = enable_parameter_averaging
self.min_steps_to_checkpoint = min_steps_to_checkpoint
self.log_interval = log_interval
self.loss_averaging_window = loss_averaging_window
self.validation_batch_size = validation_batch_size
self.log_dir = log_dir
self.logging_level = logging_level
self.prediction_dir = prediction_dir
self.checkpoint_dir = checkpoint_dir
if self.enable_parameter_averaging:
self.checkpoint_dir_averaged = checkpoint_dir + '_avg'
self.init_logging(self.log_dir)
logging.info('\nnew run with parameters:\n{}'.format(pp.pformat(self.__dict__)))
self.graph = self.build_graph()
self.session = tf.Session(graph=self.graph)
logging.info('built graph')
def update_train_params(self):
self.batch_size = self.batch_sizes[self.restart_idx]
self.learning_rate = self.learning_rates[self.restart_idx]
self.beta1_decay = self.beta1_decays[self.restart_idx]
self.early_stopping_steps = self.patiences[self.restart_idx]
def calculate_loss(self):
raise NotImplementedError('subclass must implement this')
def fit(self):
with self.session.as_default():
if self.warm_start_init_step:
self.restore(self.warm_start_init_step)
step = self.warm_start_init_step
else:
self.session.run(self.init)
step = 0
train_generator = self.reader.train_batch_generator(self.batch_size)
val_generator = self.reader.val_batch_generator(self.validation_batch_size)
train_loss_history = deque(maxlen=self.loss_averaging_window)
val_loss_history = deque(maxlen=self.loss_averaging_window)
train_time_history = deque(maxlen=self.loss_averaging_window)
val_time_history = deque(maxlen=self.loss_averaging_window)
if not hasattr(self, 'metrics'):
self.metrics = {}
metric_histories = {
metric_name: deque(maxlen=self.loss_averaging_window) for metric_name in self.metrics
}
best_validation_loss, best_validation_tstep = float('inf'), 0
while step < self.num_training_steps:
# validation evaluation
val_start = time.time()
val_batch_df = next(val_generator)
val_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in val_batch_df.items() if hasattr(self, placeholder_name)
}
val_feed_dict.update({self.learning_rate_var: self.learning_rate, self.beta1_decay_var: self.beta1_decay})
if hasattr(self, 'keep_prob'):
val_feed_dict.update({self.keep_prob: 1.0})
if hasattr(self, 'is_training'):
val_feed_dict.update({self.is_training: False})
results = self.session.run(
fetches=[self.loss] + self.metrics.values(),
feed_dict=val_feed_dict
)
val_loss = results[0]
val_metrics = results[1:] if len(results) > 1 else []
val_metrics = dict(zip(self.metrics.keys(), val_metrics))
val_loss_history.append(val_loss)
val_time_history.append(time.time() - val_start)
for key in val_metrics:
metric_histories[key].append(val_metrics[key])
if hasattr(self, 'monitor_tensors'):
for name, tensor in self.monitor_tensors.items():
[np_val] = self.session.run([tensor], feed_dict=val_feed_dict)
print(name)
print('min', np_val.min())
print('max', np_val.max())
print('mean', np_val.mean())
print('std', np_val.std())
print('nans', np.isnan(np_val).sum())
print()
print()
print()
# train step
train_start = time.time()
train_batch_df = next(train_generator)
train_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in train_batch_df.items() if hasattr(self, placeholder_name)
}
train_feed_dict.update({self.learning_rate_var: self.learning_rate, self.beta1_decay_var: self.beta1_decay})
if hasattr(self, 'keep_prob'):
train_feed_dict.update({self.keep_prob: self.keep_prob_scalar})
if hasattr(self, 'is_training'):
train_feed_dict.update({self.is_training: True})
train_loss, _ = self.session.run(
fetches=[self.loss, self.step],
feed_dict=train_feed_dict
)
train_loss_history.append(train_loss)
train_time_history.append(time.time() - train_start)
if step % self.log_interval == 0:
avg_train_loss = sum(train_loss_history) / len(train_loss_history)
avg_val_loss = sum(val_loss_history) / len(val_loss_history)
avg_train_time = sum(train_time_history) / len(train_time_history)
avg_val_time = sum(val_time_history) / len(val_time_history)
metric_log = (
"[[step {:>8}]] "
"[[train {:>4}s]] loss: {:<12} "
"[[val {:>4}s]] loss: {:<12} "
).format(
step,
round(avg_train_time, 4),
round(avg_train_loss, 8),
round(avg_val_time, 4),
round(avg_val_loss, 8),
)
early_stopping_metric = avg_val_loss
for metric_name, metric_history in metric_histories.items():
metric_val = sum(metric_history) / len(metric_history)
metric_log += '{}: {:<4} '.format(metric_name, round(metric_val, 4))
if metric_name == self.early_stopping_metric:
early_stopping_metric = metric_val
logging.info(metric_log)
if early_stopping_metric < best_validation_loss:
best_validation_loss = early_stopping_metric
best_validation_tstep = step
if step > self.min_steps_to_checkpoint:
self.save(step)
if self.enable_parameter_averaging:
self.save(step, averaged=True)
if step - best_validation_tstep > self.early_stopping_steps:
if self.num_restarts is None or self.restart_idx >= self.num_restarts:
logging.info('best validation loss of {} at training step {}'.format(
best_validation_loss, best_validation_tstep))
logging.info('early stopping - ending training.')
return
if self.restart_idx < self.num_restarts:
self.restore(best_validation_tstep)
step = best_validation_tstep
self.restart_idx += 1
self.update_train_params()
train_generator = self.reader.train_batch_generator(self.batch_size)
step += 1
if step <= self.min_steps_to_checkpoint:
best_validation_tstep = step
self.save(step)
if self.enable_parameter_averaging:
self.save(step, averaged=True)
logging.info('num_training_steps reached - ending training')
def predict(self, chunk_size=256):
if not os.path.isdir(self.prediction_dir):
os.makedirs(self.prediction_dir)
if hasattr(self, 'prediction_tensors'):
prediction_dict = {tensor_name: [] for tensor_name in self.prediction_tensors}
test_generator = self.reader.test_batch_generator(chunk_size)
for i, test_batch_df in enumerate(test_generator):
if i % 10 == 0:
print(i*len(test_batch_df))
test_feed_dict = {
getattr(self, placeholder_name, None): data
for placeholder_name, data in test_batch_df.items() if hasattr(self, placeholder_name)
}
if hasattr(self, 'keep_prob'):
test_feed_dict.update({self.keep_prob: 1.0})
if hasattr(self, 'is_training'):
test_feed_dict.update({self.is_training: False})
tensor_names, tf_tensors = zip(*self.prediction_tensors.items())
np_tensors = self.session.run(
fetches=tf_tensors,
feed_dict=test_feed_dict
)
for tensor_name, tensor in zip(tensor_names, np_tensors):
prediction_dict[tensor_name].append(tensor)
for tensor_name, tensor in prediction_dict.items():
np_tensor = np.concatenate(tensor, 0)
save_file = os.path.join(self.prediction_dir, '{}.npy'.format(tensor_name))
logging.info('saving {} with shape {} to {}'.format(tensor_name, np_tensor.shape, save_file))
np.save(save_file, np_tensor)
if hasattr(self, 'parameter_tensors'):
for tensor_name, tensor in self.parameter_tensors.items():
np_tensor = tensor.eval(self.session)
save_file = os.path.join(self.prediction_dir, '{}.npy'.format(tensor_name))
logging.info('saving {} with shape {} to {}'.format(tensor_name, np_tensor.shape, save_file))
np.save(save_file, np_tensor)
def save(self, step, averaged=False):
saver = self.saver_averaged if averaged else self.saver
checkpoint_dir = self.checkpoint_dir_averaged if averaged else self.checkpoint_dir
if not os.path.isdir(checkpoint_dir):
logging.info('creating checkpoint directory {}'.format(checkpoint_dir))
os.mkdir(checkpoint_dir)
model_path = os.path.join(checkpoint_dir, 'model')
logging.info('saving model to {}'.format(model_path))
saver.save(self.session, model_path, global_step=step)
def restore(self, step=None, averaged=False):
saver = self.saver_averaged if averaged else self.saver
checkpoint_dir = self.checkpoint_dir_averaged if averaged else self.checkpoint_dir
if not step:
model_path = tf.train.latest_checkpoint(checkpoint_dir)
logging.info('restoring model parameters from {}'.format(model_path))
saver.restore(self.session, model_path)
else:
model_path = os.path.join(
checkpoint_dir, 'model{}-{}'.format('_avg' if averaged else '', step)
)
logging.info('restoring model from {}'.format(model_path))
saver.restore(self.session, model_path)
def init_logging(self, log_dir):
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
date_str = datetime.now().strftime('%Y-%m-%d_%H-%M')
log_file = 'log_{}.txt'.format(date_str)
try: # Python 2
reload(logging) # bad
except NameError: # Python 3
import logging
logging.basicConfig(
filename=os.path.join(log_dir, log_file),
level=self.logging_level,
format='[[%(asctime)s]] %(message)s',
datefmt='%m/%d/%Y %I:%M:%S %p'
)
logging.getLogger().addHandler(logging.StreamHandler())
def update_parameters(self, loss):
if self.regularization_constant != 0:
l2_norm = tf.reduce_sum([tf.sqrt(tf.reduce_sum(tf.square(param))) for param in tf.trainable_variables()])
loss = loss + self.regularization_constant*l2_norm
optimizer = self.get_optimizer(self.learning_rate_var, self.beta1_decay_var)
grads = optimizer.compute_gradients(loss)
clipped = [(tf.clip_by_value(g, -self.grad_clip, self.grad_clip), v_) for g, v_ in grads]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
step = optimizer.apply_gradients(clipped, global_step=self.global_step)
if self.enable_parameter_averaging:
maintain_averages_op = self.ema.apply(tf.trainable_variables())
with tf.control_dependencies([step]):
self.step = tf.group(maintain_averages_op)
else:
self.step = step
logging.info('all parameters:')
logging.info(pp.pformat([(var.name, shape(var)) for var in tf.global_variables()]))
logging.info('trainable parameters:')
logging.info(pp.pformat([(var.name, shape(var)) for var in tf.trainable_variables()]))
logging.info('trainable parameter count:')
logging.info(str(np.sum(np.prod(shape(var)) for var in tf.trainable_variables())))
def get_optimizer(self, learning_rate, beta1_decay):
if self.optimizer == 'adam':
return tf.train.AdamOptimizer(learning_rate, beta1=beta1_decay)
elif self.optimizer == 'gd':
return tf.train.GradientDescentOptimizer(learning_rate)
elif self.optimizer == 'rms':
return tf.train.RMSPropOptimizer(learning_rate, decay=beta1_decay, momentum=0.9)
else:
assert False, 'optimizer must be adam, gd, or rms'
def build_graph(self):
with tf.Graph().as_default() as graph:
self.ema = tf.train.ExponentialMovingAverage(decay=0.99)
self.global_step = tf.Variable(0, trainable=False)
self.learning_rate_var = tf.Variable(0.0, trainable=False)
self.beta1_decay_var = tf.Variable(0.0, trainable=False)
self.loss = self.calculate_loss()
self.update_parameters(self.loss)
self.saver = tf.train.Saver(max_to_keep=1)
if self.enable_parameter_averaging:
self.saver_averaged = tf.train.Saver(self.ema.variables_to_restore(), max_to_keep=1)
self.init = tf.global_variables_initializer()
return graph